
 

 

DRAFT NISTIR 8060 1 

 2 

Guidelines for the Creation of 3 

Interoperable Software Identification 4 

(SWID) Tags 5 

 6 

David Waltermire 7 

Brant A. Cheikes 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

  18 



 

 

DRAFT NISTIR 8060 19 

 20 

Guidelines for the Creation of 21 

Interoperable Software Identification 22 

(SWID) Tags 23 

 24 

David Waltermire 25 

Computer Security Division 26 

Information Technology Laboratory 27 

 28 

Brant A. Cheikes 29 

Cyber Security Technical Center 30 

The MITRE Corporation 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

May 2015 39 

 40 

 41 

 42 
 43 
 44 

U.S. Department of Commerce 45 
Penny Pritzker, Secretary 46 

 47 
National Institute of Standards and Technology  48 

Willie May, Under Secretary of Commerce for Standards and Technology and Director 49 



 

ii 

National Institute of Standards and Technology Internal Report 8060 50 
56 pages (May 2015) 51 

 52 
 53 

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 54 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 55 
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 56 
available for the purpose.  57 

There may be references in this publication to other publications currently under development by NIST in 58 
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 59 
methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, 60 
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 61 
operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of 62 
these new publications by NIST.   63 

Organizations are encouraged to review all draft publications during public comment periods and provide feedback 64 
to NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 65 
http://csrc.nist.gov/publications. 66 

Public comment period: June 1, 2015 through June 15, 2015 67 

National Institute of Standards and Technology 68 
Attn: Computer Security Division, Information Technology Laboratory 69 

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 70 
Email: nistir8060-comments@nist.gov  71 

  72 

  73 

http://csrc.nist.gov/publications


 

iii 

Reports on Computer Systems Technology 74 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 75 

Technology (NIST) promotes the U.S. economy and public welfare by providing technical 76 

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 77 

methods, reference data, proof of concept implementations, and technical analyses to advance 78 

the development and productive use of information technology. ITL’s responsibilities include the 79 

development of management, administrative, technical, and physical standards and guidelines for 80 

the cost-effective security and privacy of other than national security-related information in 81 

Federal information systems. 82 

Abstract 83 

This guidance provides an overview of the capabilities and usage of Software Identification 84 

(SWID) tags as part of a comprehensive software life cycle. As instantiated in the ISO/IEC 85 

19770-2 standard, SWID tags support numerous applications for software asset management and 86 

information security management. This publication introduces SWID tags in an operational 87 

context, provides guidance for the creation of interoperable SWID tags, and highlights key usage 88 

scenarios for which SWID tags are applicable. 89 

Keywords 90 

software, software asset management, software identification tag, SWID  91 



 

iv 

Acknowledgements 92 

The authors would like to thank Harold Booth of the National Institute of Standards and 93 

Technology, and Valery Feldman and Greg Witte of G2, Inc. for their contributions to and 94 

review of this report. 95 

Note to Reviewers 96 

This document represents an initial discussion draft of this report. The authors are planning to 97 

conduct a number of iterations of this document to further develop the concepts and guidance 98 

contained herein based on public feedback. A typical cycle of revision will consist of a two week 99 

public comment period followed by a two to three week revision period resulting in an updated 100 

discussion draft. The authors plan to conduct three to six iterations of this cycle before finalizing 101 

this document. While this is a slight departure from the normal development cycle, the authors 102 

believe that this collaborative approach will result in a better set of usable guidance for SWID 103 

tag creators. 104 

For this initial draft iteration, review should be primarily focused on the first four sections of this 105 

report. Specific attention should be given to the inline questions in these sections. These 106 

questions represent areas where a significant degree of feedback is needed to advance this report. 107 

Section 5 of this document is being deemphasized since it is less developed than the balance of 108 

the document. We have included this section in its current, less-mature state to provide a sense of 109 

the desired content of the section. Tightening and clarifying the concepts in this section will be a 110 

major focus for the next draft release along with addressing comments received on the rest of the 111 

report. 112 

Trademark Information  113 

Any mention of commercial products or reference to commercial organizations is for information 114 

only; it does not imply recommendation or endorsement by NIST, nor does it imply that the 115 

products mentioned are necessarily the best available for the purpose. 116 

All names are trademarks or registered trademarks of their respective owners. 117 

Document Conventions 118 

This document provides both informative and normative guidance supporting the use of SWID 119 

tags. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 120 

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this 121 

document are to be interpreted as described in Request for Comment (RFC) 2119. When these 122 

words appear in regular case, such as “should” or “may”, they are not intended to be interpreted 123 

as RFC 2119 key words. 124 

Some of the requirements and conventions used in this document reference Extensible Markup 125 

Language (XML) content. These references come in two forms, inline and indented. An example 126 

of an inline reference is: A patch tag is differentiated by the fact that the value of the @patch 127 

attribute within the <SoftwareIdentity> element is “true”. 128 



 

v 

In this example, the notation <SoftwareIdentity> can be replaced by the more verbose 129 

equivalent “the XML element whose qualified name is SoftwareIdentity”.  130 

The general convention used when describing XML attributes within this document is to 131 

reference the attribute as well as its associated element, employing the general form 132 

"@attributeName for the <prefix:localName>". Indented references are intended to 133 

represent the form of actual XML content. Indented references represent literal content by the 134 

use of a fixed-length font, and parametric (freely replaceable) content by the use of an italic font. 135 

Square brackets ‘[]’ are used to designate optional content.  136 

Both inline and indented forms use qualified names to refer to specific XML elements. A 137 

qualified name associates a named element with a namespace. The namespace identifies the 138 

XML model, and the XML schema is a definition and implementation of that model. A qualified 139 

name declares this schema to element association using the format ‘prefix:element-name’. The 140 

association of prefix to namespace is defined in the metadata of an XML document and varies 141 

from document to document.  142 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 1 

Table of Contents 143 

1 Introduction ............................................................................................................ 4 144 

1.1 Problem Statement ......................................................................................... 4 145 

1.2 SWID Tag Benefits ......................................................................................... 5 146 

1.3 Purpose and Audience .................................................................................... 6 147 

1.4 Section Summary ............................................................................................ 7 148 

1.5 Document Structure ........................................................................................ 8 149 

2 SWID Tag Overview ............................................................................................... 9 150 

2.1 Scope Note ................................................................................................... 10 151 

2.2 Tag Types ..................................................................................................... 11 152 

2.2.1 Primary Tags ...................................................................................... 11 153 

2.2.2 Supplemental Tags............................................................................. 11 154 

2.2.3 Patch Tags ......................................................................................... 12 155 

2.2.4 Corpus Tags ....................................................................................... 13 156 

2.3 Tag Deployment............................................................................................ 13 157 

2.4 Basic Tag Elements ...................................................................................... 14 158 

2.4.1 <SoftwareIdentity>: The Root of a SWID Tag .................................... 14 159 

2.4.2 <SoftwareIdentity> Sub-Element: <Entity> ......................................... 17 160 

2.4.3 <SoftwareIdentity> Sub-Element: <Evidence> ................................... 18 161 

2.4.4 <SoftwareIdentity> Sub-Element: <Link> ........................................... 19 162 

2.4.5 <SoftwareIdentity> Sub-Element: <Meta> .......................................... 20 163 

2.4.6 <SoftwareIdentity> Sub-Element: <Payload> ..................................... 21 164 

2.5 Authenticating SWID Tags ............................................................................ 21 165 

2.6 A Complete Primary Tag Example ................................................................ 22 166 

2.7 Summary ...................................................................................................... 23 167 

3 Implementation Guidance for All Tag Creators ................................................. 25 168 

3.1 Limits on Scope of Guidance ........................................................................ 25 169 

3.2 Authoritative and Non-Authoritative Tag Creators ........................................ 26 170 

3.3 Implementing Required Entity Elements ....................................................... 26 171 

3.4 Implementing Evidence and Footprint File Data ........................................... 27 172 

3.5 Implementing Digital Signatures ................................................................... 28 173 

3.6 Updating Tags............................................................................................... 28 174 

3.7 Questions for Feedback ................................................................................ 29 175 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 2 

3.8 Summary ...................................................................................................... 29 176 

4 Implementation Guidance Specific to Tag Type ................................................ 30 177 

4.1 Implementing Primary Tags .......................................................................... 30 178 

4.1.1 Primary Tag Payload and Evidence ................................................... 30 179 

4.1.2 Mapping to Common Platform Enumeration Names .......................... 31 180 

4.2 Implementing Supplemental Tags................................................................. 32 181 

4.2.1 Precedence of Information in a Primary Tag ...................................... 32 182 

4.2.2 Linking a Supplemental Tag to the Primary Tag ................................. 33 183 

4.3 Implementing Patch Tags ............................................................................. 33 184 

4.3.1 Linking a Patch Tag to Related Tags.................................................. 33 185 

4.3.2 Patch Tag Payload and Evidence ...................................................... 35 186 

4.4 Implementing Corpus Tags ........................................................................... 36 187 

4.4.1 Corpus Tag Payload ........................................................................... 36 188 

4.4.2 Corpus Tag Signing ............................................................................ 36 189 

4.5 Summary ...................................................................................................... 36 190 

5 SWID Tag Usage Scenarios................................................................................. 38 191 

5.1 Software Inventory Management .................................................................. 38 192 

5.1.1 Usage Scenario 1 – Collecting Software Inventory Information from an 193 

Endpoint ........................................................................................................ 38 194 

5.1.2 Usage Scenario 2 –Software Inventory Reporting .............................. 39 195 

5.2 Usage Scenario 3 – Determining Vulnerable Software on an Endpoint ........ 43 196 

5.3 Software Integrity Management .................................................................... 45 197 

5.3.1 Usage Scenario 4 - Detection of software tampering ......................... 45 198 

5.4 Usage Scenario 5 - Mapping SWID Tag to Other SWID Schemes ............... 46 199 

5.5 Usage Scenario 6 - Network-Based Policy Enforcement based on SWID 200 

Information ............................................................................................................ 47 201 

 202 

203 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 3 

List of Appendices 204 

Appendix A— Acronyms ............................................................................................ 48 205 

Appendix B— References .......................................................................................... 49 206 

  207 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 4 

1 Introduction 208 

ISO/IEC 19770-2 specifies an international standard for software identification tags, also 209 

referred to as “SWID tags.” A SWID tag is a formatted set of data elements which collectively 210 

identify and describe a software product. The first version of the standard was published in 2009, 211 

and is designated ISO/IEC 19770-2:2009 [ISO/IEC 19770-2:2009]. A significantly revised 212 

version of the standard will be published in 2015, and will be designated ISO/IEC 19770-2:2015. 213 

This updated standard is referenced herein as the SWID specification. This document provides an 214 

overview of the capabilities and usage of the 19770-2:2015 version of SWID tags, focusing on 215 

the use of SWID tags as part of comprehensive software asset management (SAM) life cycles 216 

and cybersecurity procedures.  217 

Section 1.1 discusses the SAM and cybersecurity problems which motivated the development of 218 

SWID tags. Section 1.2 highlights the significant benefits which stakeholders stand to gain as 219 

SWID tags become more widely produced and consumed within the marketplace. Section 1.3 220 

describes the purpose and target audiences of this document. Section 1.4 summarizes this 221 

section’s key points, and Section 1.5 describes how the rest of this document is organized. 222 

1.1 Problem Statement 223 

Software is part of the critical infrastructure for the modern world. Enterprises as well as 224 

individuals routinely acquire software products and deploy them on the physical and/or virtual 225 

computing devices they own or operate. ISO/IEC 19770-1, a companion standard to the SWID 226 

specification, defines software asset management (SAM) as “effective management, control and 227 

protection of software assets within an organization.” A core SAM process is software inventory 228 

management—the process of building and maintaining an accurate and complete inventory of all 229 

software products deployed on all of the devices under an organization’s operational control. 230 

Consumers of software products tend to prioritize the features, functions, and usability of 231 

software when making purchasing decisions. This often creates incentives for software producers 232 

to focus their development practices on these factors. As a result, product manageability is often 233 

a lesser concern. Reliable and authoritative indicators of SAM life cycle events are often 234 

unavailable when products are installed, licensed, patched, upgraded or uninstalled. For this 235 

reason there is no consistent, standardized way to automate the processes of discovering a 236 

software product on a device (i.e., determining which products are present), or identifying an 237 

installed product by collecting key descriptive characteristics such as its exact version, license 238 

keys, patch level, associated files in device storage areas, etc. Instead, software products are 239 

installed in idiosyncratic ways that may differ substantially by product provider, operating 240 

environment, and device. This creates management challenges for enterprise IT managers who 241 

need to track software installed within their heterogeneous networked environments. 242 

Accurate software inventories of enterprise managed devices are needed to support higher-level 243 

business and cybersecurity functions. For example: 244 

 Chief Information Officers (CIOs): To ensure compliance with software license 245 

agreements, CIOs need to know how many copies of a given product are installed. To 246 

ensure they are not paying for unneeded licenses, CIOs need to know where specific 247 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 5 

copies are installed and whether they are in active use. 248 

 Chief Information Security Officers (CISOs): CISOs and operations personnel need 249 

accurate and complete software inventories to ensure that all deployed software assets are 250 

authorized, appropriately patched, free of known exploitable weaknesses, and configured 251 

in ways consistent with their organizations’ security policies. 252 

To address these needs, commercial products are offered that provide software inventory and 253 

discovery capabilities. These products employ a variety of proprietary techniques to discover and 254 

identify installed software applications. These techniques vary greatly in their accuracy, 255 

coverage of operating environments, identification of specific installed software, quality of 256 

reports produced, and amount of descriptive detail they are able to provide about each discovered 257 

application. As a result, different inventory and discovery products often reach different 258 

conclusions when inventorying the same device. For enterprises which employ inventory and 259 

discovery tools from multiple vendors, variations in report content can make it difficult or 260 

impossible to correlate findings across those tools. Finally, proprietary solutions often do not 261 

interoperate with other products, making it difficult and expensive to integrate a new inventory 262 

or discovery product into an existing infrastructure. 263 

One way to solve this problem is for software providers to adopt standard methods whereby 264 

routine inventory and discovery procedures leave indicators behind with enough consistency, 265 

detail, and fidelity to support all required SAM and cybersecurity objectives. The SWID tag 266 

standard has been developed to provide a data format for such indicators. 267 

1.2 SWID Tag Benefits 268 

SWID tags offer benefits to both creators of software products and those who acquire and use 269 

those software products. The SWID specification identifies these stakeholders as: 270 

Tag producers:  Organizations and entities that create SWID tags for use by others in the 271 

market. Ideally, the organizations involved in creating, licensing, and/or distributing software 272 

products will also create the tags which accompany their products. This is ideal because these 273 

organizations are best able to ensure that the tags contain correct and complete data. In other 274 

cases tags may be produced and distributed by other entities, including third parties and even 275 

automated tools. 276 

Tag consumers: Organizations and entities that use information contained in SWID tags 277 

associated with deployed software products to support higher-level, software-related business 278 

and cybersecurity functions. Categories of tag consumers include software consumers, 279 

inventory/discovery tools, and inventory-based cybersecurity tool providers (e.g., providers of 280 

software vulnerability management products, which rely on accurate inventory information to 281 

support accurate vulnerability assessment), and organizations that use these tools. 282 

The implementation of SWID tags beneficially supports these stakeholders throughout the entire 283 

software lifecycle—from software creation and release through software installation, 284 

management, and de-installation. As more software creators also become tag producers by 285 

releasing their products with SWID tags, more consumers of software products become able to 286 

also consume the associated tags. This promotes a “virtuous cycle” where all stakeholders gain a 287 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 6 

variety of benefits including: 288 

 The ability to consistently and accurately identify software products that need to be 289 

managed for any purpose, such as for inventory, licensing, cybersecurity, or for the 290 

management of software and software dependencies.  291 

 The ability to exchange software information between software producers and consumers 292 

in a standardized format regardless of software creator, platform, or management tool. 293 

 The ability to identify and manage software products equally well at any level of 294 

abstraction, regardless of whether a product consists of a single application, or one or 295 

more groups or bundles. 296 

 The ability to correlate information about installed software with other information 297 

including list(s) of authorized software, related patches, configuration settings, security 298 

policies, and advisories. 299 

 The ability to automatically track and manage software license compliance and usage, by 300 

combining information within a SWID tag with independently-collected software 301 

entitlement data. 302 

 The ability to record details about the deployed footprint of installed products on devices, 303 

such as the list of supporting software components, executable and data files, system 304 

processes, and generic resources that may be included in the installation (e.g., device 305 

drivers, registry settings, user accounts). 306 

 The ability to identify all organizational entities associated with the installation, 307 

licensing, maintenance, and management of a software product on an on-going basis, 308 

including software creators, software licensors, packagers, distributors external to the 309 

software consumer, as well as various entities within the software consumer. 310 

 Through the optional use of digital signatures, the ability to validate that information 311 

within the tag comes from a known source and has not been corrupted. 312 

1.3 Purpose and Audience 313 

This document has three purposes. First, it provides a high-level description of SWID tags, in 314 

order to increase familiarity with the standard. Second, it provides guidance on the creation of 315 

specific types of SWID tags that supplements the SWID tag specification. Lastly, it presents a set 316 

of operational usage scenarios together with guidelines to be followed by tag creators when 317 

preparing tags (i.e., populating the data elements that comprise tags) for use in those scenarios. 318 

By following these guidelines, tag creators can have confidence they are providing all the 319 

necessary data, with the requisite data quality, needed to achieve the operational goals of each 320 

tag usage scenario. 321 

The material herein addresses three distinct audiences. The first audience is software providers, 322 

the individuals and organizations that develop, license, and/or distribute commercial, open 323 

source, and custom software products. Software providers also include organizations that 324 

develop software solely for in-house use. This document will help providers understand the 325 

problems addressed by SWID tags, why providers’ participation is essential to solving those 326 

problems, and how providers may produce and distribute tags which meet the needs of a wide 327 

range of usage scenarios. 328 

The second audience is providers of inventory-based products and services, the individuals and 329 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 7 

organizations that develop tools for discovering and managing software assets for any reason, 330 

including to secure enterprise networks using information from standard inventory processes. 331 

This audience has unique needs due to the fact that their products and services will consume and 332 

utilize information in SWID tags as tags increasingly become available on endpoints. For 333 

inventory-based product providers, this document describes usage scenarios where the presence 334 

of properly implemented SWID tags materially enhances the quality and coverage of information 335 

which their products may collect and utilize about installed software products. By offering 336 

guidance to software providers on how to properly implement tags to support these usage 337 

scenarios, this document helps inventory-based product providers (and providers of other related 338 

IT management tools) prepare their specialized products to take full advantage of those tags 339 

when available. 340 

The third audience is software consumers, the individuals and organizations that install and use 341 

commercial, open source, and/or in-house developed software products. This document helps 342 

software consumers understand the benefits of software products which are delivered with SWID 343 

tags, and why they should encourage software providers to deliver products with SWID tags that 344 

meet all the requirements of consumers’ anticipated usage scenarios. 345 

This document seeks to help each of the three audiences understand how their respective goals 346 

are interrelated. Consumers are on the front lines, trying to cope with software management and 347 

cybersecurity challenges that require accurate software inventory. They want to address these 348 

challenges in a way that promotes a low total cost of ownership for the software they manage. 349 

Consumers need to understand how SWID tags can help them, need providers to supply high-350 

quality tags, and need implementers of inventory-based tools to collect and utilize tags. Providers 351 

need to recognize that adding tags to their products will make their products more useful and 352 

more manageable, and also need this recognition to be reinforced by clear consumer demand 353 

signals. Inventory-based tool implementers are uniquely positioned to recognize how tags could 354 

make their products more reliable and effective, and could work constructively with both 355 

consumers and providers to promote software tagging practices. 356 

1.4 Section Summary 357 

These are the key points of this section: 358 

 ISO/IEC 19770-2 specifies an international standard data format for software 359 

identification (SWID) tags. The first version of the standard was published in 2009 360 

(designated 19770-2:2009) and a significantly revised version will be published in 2015 361 

(designated 19770-2:2015). This document pertains to SWID tags as specified in 19770-362 

2:2015. 363 

 SWID tags were developed to help enterprises meet pressing needs for accurate and 364 

complete software inventories to support higher-level business and cybersecurity 365 

functions. 366 

 Tags provide an array of benefits to organizational entities which create tags as well as to 367 

those which consume tags. 368 

 Three audiences have interrelated goals related to SWID tags and tagging practices: 369 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 8 

o Software consumers are trying to cope with the challenges of conducting an 370 

accurate software inventory and the associated cybersecurity issues. They need 371 

software providers to supplying tags along with their products as a common 372 

practice. 373 

o Software providers need to increase the manageability of their products for their 374 

customers. To invest the resources necessary to become tag providers, they need 375 

consumers to send clear signals that they value product manageability as much as 376 

features, functions, and usability. 377 

o Inventory-based tool providers need to commit to SWID tags as their primary 378 

method for identifying software, and at the same time need more tags to become 379 

available to make their specialized tools more reliable and effective. They act as 380 

software providers as well as software consumers, and thus have the needs and 381 

goals of both audiences. 382 

 This document seeks to raise awareness of the SWID tag standard, promote 383 

understanding of the business and cybersecurity benefits which may be obtained through 384 

increased adoption of tag standards and practices, and provide detailed guidance to both 385 

producers and consumers of SWID tags. 386 

1.5 Document Structure 387 

The remainder of this document is organized into the following sections and appendices: 388 

 Section 2 presents a high-level overview of the SWID tag standard. This section will be 389 

of interest to all audiences, as it explains what a SWID tag is, and how tags encode a 390 

variety of identifying and descriptive data elements about software products. 391 

 Section 3 provides implementation guidance that addresses issues common to all 392 

situations in which tags are deployed and processed on information systems. The intent of 393 

this guidance is to be broadly applicable to common IT usage scenarios that are relevant 394 

to both public and private sector organizations. 395 

 Section 4 provides implementation guidance that varies according to the type of tag being 396 

implemented. 397 

 Section 5 describes several usage scenarios for software asset management and for 398 

software integrity management. These are not intended to represent an exhaustive or 399 

conclusive list of possible SWID applications, but provide informative examples 400 

regarding the use of the SWID specification to accomplish various organizational needs. 401 

 Appendix A presents a list of selected acronyms used in this document. 402 

 Appendix B provides the references for the document. 403 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 9 

2 SWID Tag Overview 404 

A SWID tag is a standard format for a set of data elements that identify and describe a software 405 

product. SWID tags are formatted as XML documents. When a software product is installed on a 406 

computing device, SWID tags for that product should also be installed or otherwise become 407 

discoverable on that device. When a product is uninstalled from a device, all associated tags 408 

should be removed.
1
 In this way, the presence of tags on a device serves as evidence of the 409 

presence of the related software products on that device described by the tags. The SWID tag 410 

specification defines these behaviors, as well as related behaviors associated with software 411 

licensing, patching, and upgrading 412 

Because software products and their tags are logically separate entities, it is important to 413 

maintain clear distinctions between SWID tags and both (a) the products that are identified and 414 

described by SWID tags, and (b) the entities and processes involved in SWID tag creation, 415 

deployment, storage, and retrieval. This document uses the term tagged software product (or, 416 

simply, tagged product) to refer to situations where a product is installed on a device, and one or 417 

more tags for that product are discoverable (whether stored explicitly or obtainable through an 418 

interface) on the device. Saying that a product is tagged does not necessarily mean that all its 419 

associated tags are created by the product provider; in fact, as this section will make clear, the 420 

various types of tags that may be associated with a given product may be supplied by a variety of 421 

organizational entities and automated tools. 422 

This section presents a high-level description of SWID tag data elements as specified in the 423 

SWID specification. The material presented here is sufficient for most audiences to acquire a 424 

general understanding how SWID tags may be used to identify and describe software products. 425 

To correctly implement tags, interested readers may want to obtain the ISO specification and the 426 

corresponding XML schema definition (XSD). The XSD for SWID tags conformant with the 427 

2015 specification may be downloaded from: 428 

http://standards.iso.org/iso/19770/-2/2015/schema.xsd 429 

The remainder of this section is organized as follows. Section 2.1 discusses expectations 430 

regarding where SWID tags reside relative to the products they identify, and how the location of 431 

a tag may or may not relate to the computing device(s) where the tagged product may be 432 

executed. Section 2.2 describes four types of tags defined in the specification. Section 2.3 433 

discusses the various scenarios by which a SWID tag is made available on a device. Section 2.4 434 

presents an overview of the basic data elements that comprise a SWID tag. Section 2.5 discusses 435 

how SWID tags may be authenticated. Section 2.6 presents examples of the four tag types, and 436 

Section 2.7 concludes with a summary of key points from this section. 437 

                                                 

1 On devices that have file systems, the SWID tag for an installed software product should be discoverable in a directory labeled 

“swidtag” that is either at the same level as the product’s installation directory, or is an immediate sub-directory of the 

product’s installation directory. Alternatively, or on devices without file systems, tags should be accessible through 

platform-specific interfaces and/or maintained in platform-specific storage locations. 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 10 

2.1 Scope Note 438 

As the Information Technology market has evolved, the concept of an “installed software 439 

product” has become increasingly complicated. The simplest concept of an “installed software 440 

product” is software that is able to be loaded into memory and executed on a computing device 441 

by virtue of being physically stored on that device. Software is “physically stored” on a 442 

computing device if it is recorded in a persistent storage component that is itself part of the 443 

hardware comprising the computing device.
2
 This document is primarily concerned with the use 444 

of SWID tags to identify software products and discover where they are stored, because it is 445 

generally assumed that where a product is stored also determines where (and often by whom) 446 

that product may be executed. 447 

The assumption that software products are physically stored on the same computing devices used 448 

to execute them is often wrong. For example, through the use of high-performance networking 449 

technologies, a software product can be physically stored on a network-attached storage (NAS) 450 

device, then executed seamlessly on any computing device able to access that NAS device. In 451 

situations like these, products and their tags should co-reside on the NAS device, and inventory 452 

tools should consider the products part of the inventory of the NAS device, not part of the 453 

inventory of each accessible computing device. In other words, storage location matters more 454 

than (and determines tag placement more than) where a product may be executed. 455 

As another example, consider removable media devices such as high-capacity USB thumb drives 456 

and SD memory cards. Once a software product is installed on such removable media, it may 457 

become executable on a computing device immediately upon insertion of the media. In this 458 

scenario, the product should be considered part of the inventory of the removable media, not part 459 

of the inventory of whichever computing device it happens to be plugged into, and the product 460 

tag should reside along with the product on the removable media. 461 

The rise of virtualization technology further clouds the issue, as it changes the very definition of 462 

what it means to be a computing device, and introduces the prospect of virtual devices being 463 

created, inventoried, and then destroyed all in the space of mere moments. When software 464 

products are installed on a virtual machine that is powered down, inactive, and stored somewhere 465 

as a machine image, those products should not be considered to exist in inventory. Consequently 466 

it does not make sense for the associated product tags to be stored or discoverable separately 467 

from the virtual machine image. But when the virtual machine is activated, loaded into memory 468 

on a physical device and assigned to a hypervisor, it should behave as if it were a real device; the 469 

tags for all products installed on the virtual machine should reside within the virtual environment 470 

so they can be associated with the virtual machine. In this scenario, tags are considered to be 471 

physically stored in virtual machine space rather than physical machine space. 472 

Finally, computing innovations such as “software as a service” and “containerization” are 473 

challenging the basic notion of what a “software product” fundamentally is. These concepts that 474 

rely on the use of ephemeral code create a natural tension between the locality of installation and 475 

                                                 

2 Software present on removable media (e.g., a USB thumb drive or SD memory card) that is plugged into a computing device is 

considered physically stored on the computing device according to this definition. 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 11 

the locality of use. When a software application is operated remotely as a service, it should be 476 

considered to be installed on the remote server rather than on the client device. But when a 477 

product is containerized and delivered to a client device for execution, that product becomes part 478 

of the client device’s product inventory, however transiently. 479 

In summary, the general rule for SWID tag placement is that tags should reside on the same 480 

storage device that holds the tagged product. Although tag consumers often may infer that a 481 

product is executable on the same device where it is stored, they must take care to distinguish 482 

cases where products may be executable on devices elsewhere within the enterprise. 483 

2.2 Tag Types 484 

The SWID specification defines four types of SWID tag: primary, supplemental, patch, and 485 

corpus. With rare exceptions, once a tag of any of these types is installed on a device, it should 486 

never be modified, only replaced or removed entirely.
3
 The intended use of each tag type is 487 

described in the subsections below. 488 

2.2.1 Primary Tags 489 

Each tagged product must provide a single tag which, at a minimum, will furnish values for all 490 

data elements that are designated “mandatory” in the SWID specification. This is referred to as 491 

the product’s primary tag. A minimal primary tag supplies the name of the product (as a string), 492 

a globally unique identifier for the tag, and basic information identifying the tag’s creator. It is 493 

important to note that the creator of a tag might not be the software provider. This distinction is 494 

discussed in section 2.4.2. 495 

A globally unique tag identifier is essential information in many usage scenarios because it may 496 

be used as a globally unique proxy identifier for the tagged product. The tag identifier can be 497 

considered a proxy identifier because there is a one-to-one binding between the tag and the 498 

software it identifies. For example, in some contexts it will be more efficient in terms of data 499 

transmission and processing costs for inventory and discovery tools to identify and report tagged 500 

products using only their tag identifiers, rather than their fully populated tags. 501 

Ideally, the product vendor is also the creator of that product’s primary tag; however, the 502 

standard permits other parties (including automated tools) to create tags for products in cases 503 

where product vendors have declined to do so or have delegated this responsibility to another 504 

party. 505 

2.2.2 Supplemental Tags 506 

Because a minimally-populated primary tag is unlikely to furnish data values sufficient for all 507 

                                                 

3 It cannot be assumed that inventory tools will fully and routinely check for changes related to previously-discovered tags. The 

preferred method for correcting tag errors is to replace an incorrect tag with a correct tag. When correcting a tag in this 

way, the new tag’s @tagVersion (cf. Section 2.4.1) is set to a larger value. The preferred method for adding information 

about a product (e.g., installation timestamps, license keys, etc.) is to install a supplemental tag (cf. Section 2.2.2) linked to 

the product’s primary tag (cf. Section 2.2.1). In either case, new tags should be used to avoid invalidating the XML digital 

signature of the original tag. 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 12 

usage scenarios of interest, the standard allows for any number of supplemental tags to be 508 

installed, either at the same time the primary tag is installed or at any time thereafter. 509 

Supplemental tags may, but need not, be created by the same entity that created the primary tag. 510 

Thus supplemental tags may be used by automated tools to augment a primary tag with 511 

additional site-specific information, such as license keys, contact information for local 512 

responsible parties, etc. 513 

Each supplemental tag contains a pointer to the product’s primary tag (cf. Section 2.4.4 on the 514 

<Link> element). When supplemental tags are present, a tag consumer may create a complete 515 

record of the information describing a product by combining the data elements in the product’s 516 

primary tag with the data elements in any linked supplemental tags. 517 

A supplemental tag is intended to furnish data values which augment and do not conflict with 518 

data values provided by the primary tag and any other of the product’s supplemental tags. If 519 

conflicts are detected, data in the primary tag should be considered the most reliable, and tools 520 

should report all other conflicting data as exceptions. For example, the mandatory product name 521 

recorded in a supplemental tag should match the product name recorded in the product’s primary 522 

tag, but if they are different, the name recorded in the primary tag should be considered the most 523 

reliable name. 524 

2.2.3 Patch Tags 525 

The SWID specification defines a patch as “a software component that, when installed, directly 526 

modifies files or device settings related to a different software component without changing the 527 

version number or release details for the related software component.” Patches are commonly 528 

used to efficiently repair defects in software products with large and complex codebases, such as 529 

operating systems and major applications.  530 

When a tagged product is patched, a patch tag should be installed as part of the patch procedure. 531 

It is also expected that if a patch is uninstalled, the associated patch tag should be removed. A 532 

patch tag is a special kind of primary tag: it records the installation of a “product” (i.e., the patch) 533 

which may have a name, version, etc., distinct from the patched product, but includes 534 

information linking it with the primary tag of the product to which the patch was applied (cf. 535 

Section 2.4.4 on the <Link> element). In this way patch tags may be used to determine whether 536 

an installed product has all required patches installed. 537 

A patch will likely also include a manifest of the patched files (cf. Section 2.4.6 on the 538 

<Payload> element) which can be used to verify that the actual patched files are present on the 539 

device. This allows for confirmation that the patch has been correctly installed, preventing a 540 

malicious actor from deploying a patch tag that misrepresents the installation status of a patch. 541 

In contrast with a patch, an upgrade is a more complete release for a product’s codebase that also 542 

changes the product’s version number and/or release details. When this occurs, all tags 543 

associated with the original (pre-upgrade) product should be removed, and new tags installed. 544 

Unlike supplemental tags, which are used to augment the identifying and descriptive data 545 

elements that are furnished in a product’s primary tag, patch tags describe localized changes 546 

made to a product’s codebase. Such localized changes may be named, versioned, and tracked 547 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 13 

separately from the base product. Thus the identifying and descriptive data elements contained in 548 

a patch tag should be treated as identifying and describing the patch rather than the product to 549 

which the patch is applied; for example, the product name and version recorded in a patch tag 550 

need not match the product name and version recorded in the product’s primary tag, and may 551 

instead be used to record the name and version of the patch as assigned by the product provider. 552 

2.2.4 Corpus Tags 553 

When products and patches are distributed to a device in preparation for installation, they 554 

typically are deployed in a “pre-installation” structure, often called a software installation 555 

package. This pre-installation structure may be stored in a file, on removable media, or on a 556 

network storage device. While primary, supplemental, and patch tags are used to identify and 557 

describe installed software products, they do not identify and describe a software installation 558 

package that can be used to install a software product. The availability of software identification 559 

and descriptive information for a software installation package enables verification of the 560 

software package and authentication of the organization releasing a package. The SWID 561 

specification defines corpus tags for vendors and distributors to use to identify and describe 562 

products in such a pre-installation state. 563 

Corpus tags may be used by consumers to verify the integrity of an installable product and 564 

authenticate the issuer of the installation before carrying out the installation procedure. If a 565 

manifest of the installation files is included in the corpus tag (cf. Section 2.4.6 on the 566 

<Payload> element), installation package tampering can be detected prior to installation. 567 

When combined with other licensing data, corpus tags also may aid consumers in confirming 568 

whether they have a valid license for a product before they install it. 569 

Corpus tags are, in essence, pre-installation primary tags. In most respects, the identifying and 570 

descriptive data elements furnished in a corpus tag (e.g., product name, version, etc.) should be 571 

the same as the data elements that will be contained in the product’s primary tag post-572 

installation. Due to the fact that software products are typically packaged or “containerized” in 573 

special pre-installation formats, the Payload portion (cf. Section 2.4.6) of a corpus tag will likely 574 

differ from the Payload portion of the primary tag that is eventually deployed on devices post-575 

installation. 576 

2.3 Tag Deployment 577 

A tag may be created: 578 

 During a product’s build/release process by an authoritative source, 579 

 During an endpoint-scanning process by a non-authoritative source (e.g. by an automated 580 

software discovery tool), or 581 

 As the result of a post-release analytic processes, by a non-authoritative source which 582 

obtains a copy of a product after its release to market, that then uses reverse-engineering 583 

and analysis techniques to create a tag. 584 

Once a tag is created, it may be deployed in three main ways. Tag deployment makes a tag 585 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 14 

discoverable by tag consumers. The preferred method of tag deployment is for a tag to be 586 

incorporated into the product’s installation package, and then installed on an endpoint as part of 587 

the software installation procedure. This method requires that the tag creator who creates the tag 588 

is in a position to ensure that it is included in the installation package. 589 

A second method of tag deployment is to store them in publicly accessible repositories. Doing so 590 

provides significant value to software consumers because it enables them to: 591 

 Confirm that a tag that has been discovered on an endpoint has not been modified, 592 

 To restore a tag which has been inadvertently deleted, 593 

 To correct a tag which has been improperly modified, and 594 

 To utilize the information in the tag to support various software-related management and 595 

analysis processes. 596 

A third method of tag deployment is implicit. Some operating environments furnish native 597 

package management systems which, when properly used to install products within those 598 

environments, automatically record all the information required to populate required data 599 

elements in a tag. In these situations, software installation systems may avoid explicit 600 

preparation and deployment of a tag on a system, as long as the native package manager provides 601 

a published interface allowing valid tags to be obtained. When a tag is produced on the 602 

installation host in this way, it will not be possible to verify the integrity of the tag produced 603 

unless an equivalent tag is also produced using the second method described above. 604 

2.4 Basic Tag Elements 605 

This section discusses the basic data elements of a SWID tag. This discussion will also explain 606 

how the four tag types described above are distinguished from each other. 607 

A SWID tag (whether primary, supplemental, patch, or corpus) is represented as an XML root 608 

element with several sub-elements. <SoftwareIdentity> is the root element, and is 609 

described in Section 2.4.1. The following sub-elements are used to express distinct categories of 610 

product information: <Entity> (Section 2.4.2), <Evidence> (Section 2.4.3), <Link> 611 

(Section 2.4.4), <Meta> (Section 2.4.5), and <Payload> (Section 2.4.6). Section 2.5 briefly 612 

discusses how digital signatures within SWID tags may be used to verify a tag’s integrity and to 613 

authenticate the signer of a tag. 614 

2.4.1 <SoftwareIdentity>: The Root of a SWID Tag 615 

Besides serving as the container for all the sub-elements described in later subsections, the 616 

<SoftwareIdentity> element provides attributes to record the following descriptive 617 

properties of a software product: 618 

 @name: the string name of the software product or component as it would normally be 619 

referenced, e.g., “ACME Roadrunner Management Suite”. A value for @name is 620 

required. 621 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 15 

 @version: the detailed version of the product, e.g., “4.1.5”. A value for @version is 622 

optional and defaults to “0.0”. 623 

 @versionScheme: a label describing how version information is encoded, e.g., 624 

“multipartnumeric”. A value for @versionScheme is optional and defaults to 625 

“multipartnumeric”. 626 

 @tagId: a globally-unique identifier that may be used as a proxy identifier in other 627 

contexts to refer to the tagged product. A value for @tagId is required. 628 

 @tagVersion: an integer which allows one tag for a software product to supersede 629 

another, without indicating any change to the underlying software product being 630 

described. This value can be increased to correct errors in or to add new information to an 631 

earlier tag. A value for @tagVersion is optional and defaults to 0 (zero). 632 

It should be considered an error if multiple tags are found for the same installed product 633 

with the same the same @tagId and a different @tagVersion. If this occurs, the tag 634 

with the highest @tagVersion should be used. 635 

 @supplemental: a boolean value which, if set to true, indicates that the tag type is 636 

supplemental, and if set to false, indicates that the tag type is primary. A value for 637 

@supplemental is optional and defaults to false. 638 

 @patch: a boolean value which, if set to true, indicates that the tag type is patch. A 639 

value for patch is optional and defaults to false. (Note: if @patch is set to true, 640 

@supplemental must be false.) 641 

 @corpus: a boolean value which, if set to true, indicates that the tag type is corpus. A 642 

value for @corpus is optional and defaults to false. 643 

2.4.1.1 Example 1—Primary Product Tag 644 

This example illustrates a primary tag for version 4.1.5 of a product named “ACME Roadrunner 645 

Management Suite Coyote Edition.” The globally unique tag identifier, or @tagId, is 646 

“com.acme.rms-ce-v4-1-5-0”. The <Entity> element (cf. Section 2.4.2) is included so the 647 

example illustrates all data values required in a minimal tag that conforms to the ISO standard. 648 

Any additional identifying data (not shown) would appear in place of the ellipsis. 649 

<SoftwareIdentity  650 
  xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"  651 

  name="ACME Roadrunner Management Suite Coyote Edition"  652 
  tagId="com.acme.rms-ce-v4-1-5-0"  653 
  tagVersion="0" 654 

  version="4.1.5"> 655 
  <Entity 656 
    name="The ACME Corporation" 657 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 16 

    regid="acme.com" 658 
    role="tagCreator softwareCreator"/> 659 

 … 660 
</SoftwareIdentity> 661 
 662 

2.4.1.2 Example 2—Supplemental Tag 663 

This example illustrates a supplemental tag for an already installed product. The globally unique 664 

identifier of the supplemental tag “com.acme.rms-sensor-1”. The <Entity> element (cf. 665 

Section 2.4.2) is included so the example illustrates all data values required in a minimal tag that 666 

conforms to the standard. The <Link> element (cf. Section 2.4.4) is included to illustrate how a 667 

supplemental tag may be associated with the primary tag shown above in Section 2.4.1.1. This 668 

supplemental tag may be supplying additional installation details which are not included in the 669 

product’s primary tag (e.g., site-specific information such as contact information for the local 670 

product steward). These details would appear in place of the ellipsis. 671 

<SoftwareIdentity  672 

  xmlns=http://standards.iso.org/iso/19770/-2/2015/schema.xsd 673 
  name="ACME Roadrunner Management Suite Coyote Edition"  674 
  tagId="com.acme.rms-sensor-1"  675 
  supplemental="true"> 676 

  <Entity 677 
    name="The ACME Corporation" 678 
    regid="acme.com" 679 

    role="tagCreator softwareCreator"/> 680 
  <Link 681 
    rel="related" 682 
    href="swid:com.acme.rms-ce-v4-1-5-0"> 683 

 … 684 
</SoftwareIdentity> 685 
 686 

2.4.1.3 Example 3—Patch Tag 687 

This example illustrates a patch tag for a previously installed product. The name of the patch is 688 

“ACME Roadrunner Service Pack 1”, and its globally unique tag identifier is “com.acme.rms-ce-689 

sp1-v1-0-0”. <Entity> and <Link> elements are illustrated as before. Any additional 690 

identifying data (not shown) would appear in place of the ellipsis. 691 

<SoftwareIdentity  692 
  xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"  693 

  name="ACME Roadrunner Service Pack 1"  694 
  tagId="com.acme.rms-ce-sp1-v1-0-0"  695 
  patch="true" 696 

  version="1.0.0"> 697 
  <Entity 698 
    name="The ACME Corporation" 699 
    regid="acme.com" 700 

http://standards.iso.org/iso/19770/-2/2015/schema.xsd


NISTIR 8060  SWID Tag Interoperability Guidelines 

 17 

    role="tagCreator softwareCreator"/> 701 
  <Link 702 

    rel="patches" 703 
    href="swid:com.acme.rms-ce-v4-1-5-0"> 704 
 … 705 
</SoftwareIdentity> 706 

 707 

2.4.2 <SoftwareIdentity> Sub-Element: <Entity> 708 

Every SWID tag must identify, at minimum, the organizational or individual entity which 709 

created the tag. Entities having other roles associated with the identified software product, such 710 

as its creator, licensor(s), distributor(s), etc., may optionally be identified. These entities are 711 

identified using <Entity> elements contained within the <SoftwareIdentity> element. 712 

Each <Entity> element provides the following attributes: 713 

 @name: the string name of the entity, e.g., “The ACME Corporation”. A value for 714 

@name is required. 715 

 @regid: the “registration identifier” of the entity (further discussed below). A value for 716 

@regid is required when the Entity element is used to identify the tag creator (i.e., 717 

@role=”tagCreator”), otherwise @regid is optional and defaults to 718 

“invalid.unavailable”.  719 

 @role: the role of the entity with respect to the tag and/or the product identified by the 720 

tag. Every <Entity> element must contain a value for @role, and additionally, every 721 

tag must contain an <Entity> element identifying the tag creator. Values for @role 722 

are selected from an extensible set of allowed tokens, including these: 723 

o aggregator: entities which package sets of products and make them 724 

available as single installable items 725 

o distributor: entities which handle distribution of products developed by 726 

others 727 

o licensor: entities which handle licensing on behalf of others 728 

o softwareCreator: entities which develop software products 729 

o tagCreator: entities which create SWID tags 730 

Values for @regid must be URI references as described in RFC 3986 [RFC 3986]. To ensure 731 

interoperability and allow for open source project support, the specification recommends in 732 

section 6.1.5.2 that tag creators do the following when creating a value for @regid: 733 

 Unless otherwise required, the URI should utilize the http scheme. 734 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 18 

 If the http scheme is used, the “http://” may be left off the regid string. 735 

 Unless otherwise required, the URI should use an absolute-URI that includes an authority 736 

part, such as a domain name. 737 

 To ensure consistency, the absolute-URI should use the minimum string required (for 738 

example, example.com should be used instead of www.example.com. 739 

The example below illustrates a SWID tag containing two <Entity> elements. The first 740 

<Entity> element identifies the single organization which is both the software creator and the 741 

tag creator, and a second element identifies the organization which is the software’s distributor: 742 

<SoftwareIdentity …>  743 
  … 744 

  <Entity 745 
    name="The ACME Corporation" 746 
    regid="acme.com" 747 
    role="tagCreator softwareCreator"/> 748 

  <Entity 749 
    name="Coyote Services, Inc." 750 
    regid="mycoyote.com" 751 

    role="distributor"/> 752 
  … 753 
</SoftwareIdentity> 754 

2.4.3 <SoftwareIdentity> Sub-Element: <Evidence> 755 

Not every software product installed on a device will be supplied with a tag. When a tag is not 756 

found for an installed product, third-party software inventory and discovery tools will continue to 757 

be used to discover untagged products residing on devices. In these situations, the inventory or 758 

discovery tool may generate a primary tag on-the-fly to record the newly-discovered product. 759 

The optional <Evidence> element may then be used to store results from the scan that explain 760 

why the product is believed to be installed. To that end, the <Evidence> element provides two 761 

attributes and four sub-elements, all of which are optional: 762 

o @date: the date the evidence was collected. 763 

o @deviceId: the identifier of the device from which the evidence was collected. 764 

o <Directory>: filesystem root and directory information for discovered files. 765 

o <File>: files discovered and believed to be part of the product. 766 

o <Process>: related processes discovered on the device. 767 

o <Resource>: other general information which may be included as part of the product. 768 

Note that <Evidence> is represented in a SWID tag in the same manner as <Payload> (cf. 769 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 19 

Section 2.4.6). There is a key difference, however, between <Evidence> and <Payload> 770 

data. The <Evidence> element is used by discovery tools that identify untagged software. 771 

Here the discovery tool creates a SWID tag based on data discovered on a device. In this case, 772 

the <Evidence> element indicates only what was discovered on the device, but this data 773 

cannot be used to determine whether discovered files match what a software provider originally 774 

released or what was originally installed. In contrast, <Payload> data supplies information 775 

from an authoritative source (typically the software provider or a delegate), and thus may be 776 

used, for example, to determine if files in a directory match the files that were designated as 777 

being installed with a software component or software product. 778 

The example below illustrates a SWID tag containing an <Evidence> element. The evidence 779 

consists of two files discovered in a folder named “rrdetector” within the device’s standard 780 

program data area: 781 

<SoftwareIdentity …>  782 
  … 783 
  <Evidence date="11-28-2014" deviceId="mm123-pc.acme.com"> 784 

    <Directory root="%programdata%" location="rrdetector"> 785 
      <File name="rrdetector.exe" size="532712"/> 786 
      <File name="sensors.dll" size="13295"/> 787 

    </Directory> 788 
  </Evidence> 789 
  … 790 
</SoftwareIdentity> 791 

2.4.4 <SoftwareIdentity> Sub-Element: <Link> 792 

Modeled on the HTML [LINK] element, <Link> elements are used to record a variety of 793 

relationships between a SWID tag and other items. One typical use of a <Link> element is to 794 

associate a supplemental or patch tag to a primary tag. Other uses include pointing to standard 795 

licenses, vendor support pages, and installation media. The <Link> element has two required 796 

attributes: 797 

o @href: the value is a URI pointing to the item to be referenced. 798 

o @rel: the value specifies the type of relationship between the SWID tag and the item 799 

referenced by @href. 800 

A number of additional optional attributes, which are not discussed in this section, support 801 

specialized situations. 802 

The example below illustrates how a <Link> element may be used to associate a patch tag 803 

with the tag for the patched product: 804 

<SoftwareIdentity 805 
  … 806 
  name="ACME Roadrunner Service Pack 1"  807 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 20 

  tagId="com.acme.rms-ce-sp1-v1-0-0"  808 
  patch="true" 809 

  version="1.0.0"> 810 
  … 811 
  <Link 812 
    rel="related" 813 

    href="swid:com.acme.rms-ce-v4-1-5-0"> 814 
  … 815 
</SoftwareIdentity> 816 

In this example, the patch has its own @tagId and @version, and links to the patched product 817 

tag using that product’s @tagId. 818 

2.4.5 <SoftwareIdentity> Sub-Element: <Meta> 819 

Meta elements are used to record an array of optional metadata attributes related to the tag or to 820 

the product. Several <Meta> attributes of interest are highlighted below: 821 

o @activationStatus: identifies the activation status of the product with respect to 822 

any licensing arrangements, e.g., Trial, Serialized, Licensed, Unlicensed, 823 

etc. 824 

o @colloquialVersion: the informal version of the product (i.e., 2013). The 825 

colloquial version may be the same through multiple releases of a software product where 826 

the version specified in <SoftwareIdentity> is much more specific and will change 827 

for each software release. 828 

o @edition: the variation of the product, e.g., Home, Enterprise, Professional, Standard, 829 

Student. 830 

o @product: the base name of the product, exclusive of vendor, colloquial version, 831 

edition, etc. 832 

o @revision: the informal or colloquial representation of the sub-version of the product 833 

(e.g. SP1, R2, RC1, Beta 2, etc.).  Whereas the <SoftwareIdentity> element’s 834 

@version attribute will provide exact version details, the @revision attribute is 835 

intended for use in environments where reporting on the informal or colloquial 836 

representation of the software is important, for example, if for a certain business process 837 

an organization decides that it must have Service Pack 1 or later of a specific product 838 

installed on all devices, they can use the revision data value to quickly identify any 839 

devices that do not meet this requirement. 840 

In the example below, a <Meta> element is used to record the fact that the product is installed 841 

on a trial basis, and to break out the full product name into its component parts: 842 

<SoftwareIdentity …> 843 

  …  844 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 21 

  name="ACME Roadrunner Detector 2013 Coyote Edition SP1"  845 
  tagId="com.acme.rd2013-ce-sp1-v4-1-5-0"  846 

  version="4.1.5"> 847 
  … 848 
  <Meta 849 
    activationStatus="trial" 850 

    product="Roadrunner Detector" 851 
    colloquialVersion="2013" 852 
    edition="coyote" 853 

    revision="sp1"/> 854 
  …  855 
</SoftwareIdentity> 856 

2.4.6 <SoftwareIdentity> Sub-Element: <Payload> 857 

The optional <Payload> element is used to enumerate the items (files, folders, license keys, 858 

etc.) which may be installed on a device when a software product is installed. In general, 859 

<Payload> is used to indicate the files that may be installed with a software product and will 860 

often be a superset of those files (i.e., if a particular optional component is not installed, the files 861 

associated with that component may be included in the <Payload>, but not installed on the 862 

device.) 863 

The <Payload> element is a container for <Directory>, <File>, <Process>, and/or 864 

<Resource> elements, similar to the <Evidence> element. This example illustrates a primary 865 

tag with a <Payload> describing two files in a single directory: 866 

<SoftwareIdentity …>  867 
  … 868 
  <Payload> 869 

    <Directory root="%programdata%" location="rrdetector"> 870 
      <File name="rrdetector.exe" size="532712"/> 871 
      <File name="sensors.dll" size="13295"/> 872 

    </Directory> 873 
  </Payload> 874 
  … 875 
</SoftwareIdentity> 876 

2.5 Authenticating SWID Tags 877 

Because SWID tags are documents discoverable on a device, they are vulnerable to unauthorized 878 

or inadvertent modification like any other document. To identify tag modifications, it is 879 

necessary to validate that a SWID tag collected during an inventory or discovery process has not 880 

had specific elements of the tag altered. Digital signatures embedded within a SWID tag can be 881 

used to validate that changes have not been made and to prove the authenticity of the tag signer.  882 

Section 6.1.10 of the SWID specification states that: 883 

Digital signatures are not a mandatory part of the SWID tag standard, and can be used as 884 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 22 

required by any tag producer to ensure that sections of a tag are not modified, and/or to 885 

provide authentication of the signer. If signatures are included in the software 886 

identification tag, they shall follow the W3C recommendation defining the XML 887 

signature syntax which provides message integrity authentication as well as signer 888 

authentication services for data of any type.  889 

This text is referencing the W3c note on XML Advanced Electronic Signatures (XAdES) 890 

[XAdES] which defines a base signature form and six additional signature forms. 891 

Digital signatures use the <Signature> element as described in the W3C XML Signature 892 

Syntax and Processing (Second Edition) specification [xmldsig-core] and the associated 893 

schema.
4
 Users may also include a hexadecimal hash string (the “thumbprint”) to document the 894 

relationship between the tag entity and the signature, using the <Entity> @thumbprint 895 

attribute.  896 

Section 6.1.10 of the ISO specification references the XAdES with Time-Stamp (XAdES-T) 897 

form stating that: 898 

When a signature is utilized for a SWID tag, the signature shall be an enveloped signature 899 

and the digital signature must include a timestamp provided by a trusted timestamp 900 

server. This timestamp must be provided using the XAdES-T form.  901 

The SWID tag must also include the public signature for the signing entity. 902 

The SWID tag specification in section 6.1.10 also requires that a digitally-signed SWID tag 903 

enable tag consumers to: 904 

Utilize the data encapsulated by the SWID tag to ensure that the digital signature was 905 

validated by a trusted certificate authority (CA), that the SWID tag was signed during the 906 

validity period for that signature, and that no signed data in the SWID tag has been 907 

modified. All of these validations shall be able to be accomplished without requiring 908 

access to an external network.  If a SWID tag consumer needs to validate that the digital 909 

certificate has not been revoked, then it is expected that there be access to an external 910 

network or a data source that can provide [access to the necessary] revocation 911 

information. 912 

Additional information on digital signatures, how they work, and the minimum requirements for 913 

digital signatures used for US Federal Government processing can be found in the Federal 914 

Information Processing Standards (FIPS) Publication 186-4, Digital Signature Standard (DSS) 915 

[FIPS-186-4]. 916 

2.6 A Complete Primary Tag Example 917 

A complete tag is illustrated below, combining examples from the preceding subsections. This 918 

example illustrates a primary tag that contains all mandatory data elements as well as a number 919 

                                                 

4 See http://www.w3.org/TR/xmldsig-core/#sec-Schema. 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 23 

of optional data elements. This example does not illustrate the use of digital signatures. 920 

<SoftwareIdentity  921 
  xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"  922 

  name="ACME Roadrunner Detector 2013 Coyote Edition SP1"  923 
  tagId="com.acme.rrd2013-ce-sp1-v4-1-5-0"  924 
  version="4.1.5"> 925 
  <Entity 926 

    name="The ACME Corporation" 927 
    regid="acme.com" 928 
    role="tagCreator softwareCreator"/> 929 

  <Entity 930 
    name="Coyote Services, Inc." 931 
    regid="mycoyote.com" 932 
    role="distributor"/> 933 

  <Link 934 
    rel="license" 935 
    href=www.gnu.org/licenses/gpl.txt/> 936 
  <Meta 937 

    activationStatus="trial" 938 
    product="Roadrunner Detector" 939 
    colloquialVersion="2013" 940 

    edition="coyote" 941 
    revision="sp1"/> 942 
  <Payload> 943 
    <Directory root="%programdata%" location="rrdetector"> 944 

      <File name="rrdetector.exe" size="532712"/> 945 
      <File name="sensors.dll" size="13295"/> 946 
    </Directory> 947 

  </Payload> 948 
</SoftwareIdentity> 949 

2.7 Summary 950 

SWID tags are rich sources of information useful for identifying and describing software 951 

products installed on devices. A relatively small number of elements and attributes are required 952 

in order for a tag to be considered valid and conforming to the specification. Many other optional 953 

data elements and attributes are provided by the specification to support a wide range of usage 954 

scenarios. 955 

A minimal valid and conforming tag uses a <SoftwareIdentity> element to record a 956 

product’s name and the tag’s globally-unique identifier, and contains an <Entity> element to 957 

record the name and registration identifier of the tag creator. While such a minimal tag is better 958 

than no tag at all in terms of enhancing the ability of SAM tools to discover and account for 959 

installed products, it falls short of satisfying many higher-level business and cybersecurity needs. 960 

To meet those needs, the SWID tag standard offers several additional elements, such as 961 

<Evidence> (for use by scanning tools to record results of the discovery process), <Link> 962 

(to associate tags with other items, including other tags), <Meta> (to record a variety of 963 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 24 

metadata values), and <Payload> (to enumerate files, etc., that comprise the installed product). 964 

Finally, digital signatures may optionally be used by any tag producer to ensure that the contents 965 

of a tag are not accidentally or deliberately modified after installation, and to provide 966 

authentication of the signer. 967 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 25 

3 Implementation Guidance for All Tag Creators 968 

The next three sections provide implementation guidance for creators of SWID tags. The primary 969 

purpose of this guidance is to help tag creators understand how to implement SWID tags in a 970 

consistent manner that will satisfy the tag-handling requirements of both public and private 971 

sector organizations. The intent of this guidance is to be broadly applicable to common IT usage 972 

scenarios that are generally relevant to IT organizations. In some limited cases, specific 973 

statements are identified as being specific to United States Government requirements. In all other 974 

cases, this guidance is directed at general usage of SWID tags. 975 

Each guidance item in the next three sections is prefixed with a coded identifier for ease of 976 

reference from other documents. Such identifiers have the following format: CAT-NUM, where 977 

“CAT” is a three-letter symbol indicating the guidance category, and NUM is a number. 978 

This section provides implementation guidance that addresses issues common to all situations in 979 

which tags are deployed and processed. Section 4 provides guidance that varies according to the 980 

type of tag being implemented (cf. Section 2.2). Section 5 provides guidance that varies 981 

according to usage scenario. Whereas Sections 3 and 4 establish minimum requirements use of 982 

SWID tags on information systems, Section 5 recognizes that SWID tags may be used for 983 

specialized business purposes, and that these specialized purposes create additional specialized 984 

tag implementation requirements. 985 

3.1 Limits on Scope of Guidance 986 

This document assumes that tag implementers are familiar with the SWID specification and 987 

ensure that implemented tags satisfy all requirements contained therein. 988 

 When producing SWID tags, tag creators MUST produce SWID tags which GEN-1.989 

conform to all requirements defined in the 19770-2:2015 specification.  990 

Guidance item GEN-1 establishes a baseline of interoperability that is needed by all adopters 991 

of SWID tags. 992 

All guidance provided in this document is intended solely to extend and not to conflict with any 993 

guidance provided by the SWID specification. Guidance in this document either: 994 

 Strengthens existing guidance contained in the SWID specification by elevating 995 

“SHOULD” clauses contained in the SWID specification to “MUST” clauses, or 996 

 Adds guidance where existing guidance is weak or absent by adding new “SHOULD” or 997 

“MUST” clauses to address implementation issues where the SWID specification is silent 998 

or ambiguous. 999 

In no cases should this document’s guidance be construed as either weakening or eliminating 1000 

existing guidance in the SWID specification. 1001 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 26 

3.2 Authoritative and Non-Authoritative Tag Creators 1002 

SWID tags may be created by different entities (individuals, organizations, or automated tools) 1003 

and under different conditions. Who creates a tag, as well as the conditions under which a tag is 1004 

created, profoundly affect the quality, accuracy, completeness, and trustworthiness of the data 1005 

contained in a tag. 1006 

Tags may be created by authoritative or non-authoritative entities. For the purposes of this 1007 

document, an “authoritative tag creator” is defined as a 1
st
- or 2

nd
-party to the creation, 1008 

maintenance, and distribution of the software. Essentially, any party that is involved in tag 1009 

creation while releasing software is considered an authoritative tag creator. Such parties tend to 1010 

possesses accurate, complete, and detailed technical knowledge of a software product at the time 1011 

a tag for that product is created. Software creators are authoritative tag creators by definition. 1012 

A “non-authoritative tag creator” is defined as an entity (individual, organization, or automated 1013 

tool) which is in a 3
rd

-party relation to the creation, maintenance, and distribution of the 1014 

software. Non-authoritative tag creators typically create tags using product information that is 1015 

gathered indirectly, based on reverse engineering or by performing other technical analysis on 1016 

the product. 1017 

Unless otherwise specified, guidance in this document is directed at both authoritative and non-1018 

authoritative tag creators. Guidance prefixed with “[Auth]” is directed specifically at 1019 

authoritative tag creators, and guidance prefixed with “[Non-Auth]” is directed specifically at 1020 

non-authoritative tag creators. 1021 

3.3 Implementing Required Entity Elements  1022 

Section 8.2 of the SWID specification establishes a requirement that every SWID tag contain an 1023 

<Entity> element where the @role attribute has the value “tagCreator”, and the @name 1024 

and @regid attributes are also provided. 1025 

It is important to be able to inspect a tag and rapidly determine whether the tag creator is 1026 

authoritative or non-authoritative. When a tag contains only a single <Entity> element that 1027 

describes only the tag creator role, it must be assumed that the tag creator is non-authoritative. 1028 

Authoritative tag creators are required to provide one or more additional <Entity> elements or 1029 

a single <Entity> element with multiple @role attribute values specifying organizations 1030 

having any of these predefined roles: “aggregator”, “distributor”, “licensor”, or 1031 

“softwareCreator”. At a minimum, authoritative tag creators must provide an <Entity> 1032 

element identifying the softwareCreator. 1033 

Consumers may distinguish authoritative and non-authoritative tag creators using this rule: If the 1034 

value of <Entity> @regid of the entity having the @role of “tagCreator” matches the 1035 

value of <Entity> @regid of an entity having a @role value that is any of  1036 

“aggregator”, “distributor”, “licensor”, or “softwareCreator”, then the tag 1037 

creator is authoritative. 1038 

 [Auth] Authoritative tag creators MUST provide an <Entity> element where the GEN-2.1039 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 27 

@role attribute contains the value softwareCreator, and the @name and @regid 1040 

attributes are also provided.  1041 

 [Non-Auth] Non-authoritative tag creators SHOULD provide an <Entity> GEN-3.1042 

element where the @role attribute contains the value softwareCreator, and the 1043 

@name attribute is also provided, whenever it is possible to identify the name of the entity 1044 

which created the software product. 1045 

3.4 Implementing Evidence and Footprint File Data 1046 

Files are enumerated within <Payload> and <Evidence> elements using the <File> 1047 

element. The SWID specification requires only that the <File> element specify the name of the 1048 

file, using the @name attribute. Additional information is needed to enable SAM processes to 1049 

check whether files have been improperly modified since they were originally deployed. By 1050 

including file size information within <Payload> and <Evidence> elements using the 1051 

@size attribute, SAM processes may rapidly and efficiently test for changes which alter a file’s 1052 

size. Because improper changes may occur without affecting file sizes, file hash values are also 1053 

necessary. 1054 

 Every <File> element provided within a <Payload> or <Evidence> element GEN-4.1055 

MUST include a value for the @size attribute that specifies the size of the file in bytes. 1056 

 Every <File> element within a <Payload> element MUST include a hash value. GEN-5.1057 

When selecting a hash function, the support lifecycle of the associated product needs to be 1058 

considered. The hash value will likely be produced at the point of product release and will be 1059 

used by tag consumers over the support lifecycle of the product and in some cases even longer. 1060 

According to SP 800-57 Part 1 [SP800-57-part-1] when applying a hash function over a time 1061 

period that extends to 2030, a minimum security strength of 112 bits is needed. A minimum 1062 

security strength of 128 bits is needed if this period extends to 2031 and beyond.  1063 

Software products tend to have a support lifetime of three to five years, with use that often 1064 

extends beyond this period. Stability in the hash functions used within SWID tags is also 1065 

desirable to maximize the interoperability of SWID-based tools while minimizing development 1066 

and maintenance costs. Taking these considerations into account, it is desirable to choose a hash 1067 

function that provides a minimum security strength of 128 bits to maximize the usage period. 1068 

According to [SP800-107] the selected hash function needs to provide the following security 1069 

properties: 1070 

 Collision Resistance: “It is computationally infeasible to find two different inputs to the 1071 
hash function that have the same hash value.” This provides assurance that two different files 1072 
will have different computed hash values. 1073 

 Second Preimage Resistance: “It is computationally infeasible to find a second input that 1074 
has the same hash value as any other specified input.”  This provides assurance that a file 1075 
cannot be engineered that will have the same hash value as the original file. This makes it 1076 
difficult for a malicious actor to add malware into stored executable code while maintaining 1077 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 28 

the same hash value. 1078 

Out of the FIPS 180-4 [FIPS180-4] approved hash functions, SHA-256, SHA-384, SHA-512, 1079 

and SHA-512/256 meet the 128 bit strength requirements for collision resistance and second 1080 

preimage resistance. This leads to the following guidance: 1081 

 Whenever <Payload> or <Evidence> is included in a tag, every <File> GEN-6.1082 

element contained therein MUST provide a hash value based on the SHA-256 has function. 1083 

 Whenever <Payload> or <Evidence> is included in a tag, every <File> GEN-7.1084 

element contained therein MAY additionally provide hash values based on the SHA-384, 1085 

SHA-512, and/or SHA-512/256 hash functions. 1086 

Note: Use of SHA-512 may perform better on 64-bit systems. 1087 

 Whenever <Payload> or <Evidence> is included in a tag, every <File> GEN-8.1088 

element SHOULD avoid the inclusion of hash values based on hash functions with 1089 

insufficient security strength (< 128 bits).  1090 

3.5 Implementing Digital Signatures 1091 

This section contains draft guidance on the use of digital signatures within tags. Section 6.1.10 of 1092 

the SWID specification discusses the use of digital signatures, and asserts no mandates for when 1093 

and how signatures should be used. This section provides additional guidance to provide a 1094 

reproducible, interoperable, and verifiable framework for generation and use of digital 1095 

signatures. 1096 

NOTE: Guidance in this section remains to be written. NIST has found that there are 1097 

interoperability concerns with the use of non-specified default values. Some canonicalization 1098 

implementations do not digest these values properly. 1099 

 Question: What general requirements should be established to address this issue? Is the 1100 

trust model described in NIST IR 7802 [NISTIR 7802] a suitable starting point? 1101 

 Question: How do we properly account for differences in how signing implementation 1102 

handle default values when digitally signing tags? Consider requiring values for all 1103 

attributes with no assumption of a default value. 1104 

3.6 Updating Tags 1105 

Section 5.2 of SWID specification requires that, once deployed, SWID tags may only be 1106 

modified by the organization that initially created the tag. As the specification notes, “this is to 1107 

ensure that data, especially digitally signed data, is not modified in any way that the tag producer 1108 

is not directly responsible.” Nevertheless, tag creators may find it necessary from time to time to 1109 

update a previously-deployed tag to correct errors or to add data elements which logically belong 1110 

in the tag and not in a separate supplemental tag. 1111 

Such updating of tags can create efficiency issues if it is not easy to determine that a tag 1112 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 29 

previously encountered on an endpoint has changed since it was last discovered and inspected. 1113 

Tag collection and processing systems may gain significant efficiencies from analyzing tags in 1114 

detail only at the time the tags are first encountered. The way this could work is that, upon 1115 

encountering a tag on an endpoint, a tag processor queries a database using the tag’s @tagId, 1116 

seeking to determine whether a tag with that tag identifier has previously been found on the 1117 

endpoint. If the query result is positive (i.e., the tag was encountered previously), then no further 1118 

processing is performed, otherwise, the tag is fully parsed and analyzed, and the database is 1119 

updated accordingly. 1120 

To support such processing efficiencies, it is necessary to ensure that only one or two tag data 1121 

elements need to be checked in order to decide whether or not the tag has been encountered 1122 

previously. 1123 

 When a previously deployed tag is changed on a device, its @tagId attribute GEN-9.1124 

MUST be changed when the new tag describes a different product; e.g., the @name or 1125 

@version attributes have changed. 1126 

 When a previously deployed tag is changed on a device, its @tagVersion GEN-10.1127 

attribute MUST be changed when the new tag corrects errors in the original tag. 1128 

3.7 Questions for Feedback 1129 

This section enumerates open questions related to additional implementation guidance which 1130 

may be required. Feedback on these questions from reviewers is invited. 1131 

 Question: Do we need to provide guidance on tags for products which are accessible from 1132 

a device (e.g., via network attached storage) rather than installed on local storage? What 1133 

would such guidance look like? 1134 

3.8 Summary 1135 

These are the key points from this section: 1136 

 The primary purpose of guidance in this document is to help tag creators understand how 1137 

to implement SWID tags in a manner that will satisfy the tag-handling requirements of IT 1138 

organizations. 1139 

 Nevertheless, the intent of this guidance is to be broadly applicable to common IT usage 1140 

scenarios that are relevant to private and commercial businesses as well. 1141 

 This section provided implementation guidance that addresses issues common to all 1142 

situations in which tags are deployed and processed. The next section provides guidance 1143 

that varies according to the type of tag being implemented (cf. Section 2.2). 1144 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 30 

4 Implementation Guidance Specific to Tag Type 1145 

This section provides draft implementation guidance that varies according to each of the four 1146 

defined tag types (cf. Section 2.2): primary tags (Section 4.1), supplemental tags (Section 4.2), 1147 

patch tags (Section 4.3), and corpus tags (Section 4.4). 1148 

4.1 Implementing Primary Tags 1149 

The primary tag for a software product contains descriptive metadata needed to support a variety 1150 

of business processes. To ensure that tags contain the metadata needed to help automate IT and 1151 

cybsersecurity processes on information systems, additional requirements must be satisfied. This 1152 

section provides guidance addressing two topics: specification of <Payload> or 1153 

<Evidence> information (Section 4.1.1), and support for mapping to Common Platform 1154 

Enumeration names (Section 4.1.2). 1155 

4.1.1 Primary Tag Payload and Evidence 1156 

Detailed information about the files comprising an installed software product is a critical need. 1157 

Such information enables endpoint software inventory and integrity tools to confirm that the 1158 

product described by a discovered tag is, in fact, installed on a device. Thus authoritative tag 1159 

creators are required to provide a <Payload> element, either in the primary tag or in a 1160 

supplemental tag. For non-authoritative tag creators, an <Evidence> element needs to be 1161 

provided . 1162 

PRI-1. [Auth] A <Payload> element MUST be provided, either in a software product’s 1163 

primary tag, or in a supplemental tag. 1164 

PRI-2. [Non-Auth] An <Evidence> element MUST be provided, either in a software 1165 

product’s primary tag, or in a supplemental tag. 1166 

Ideally, <Payload> and <Evidence> elements should list every file that is found to be part 1167 

of the product described by the tag. Such information aids in the detection of malicious software 1168 

attempting to hide among legitimate product files. 1169 

PRI-3. <Payload> and <Evidence> elements SHOULD list every file comprising the 1170 

product described by the tag. 1171 

Although a full enumeration of product files is the ideal, at a minimum, only those files subject 1172 

to execution, referred to here as machine instruction files, need to be listed. A machine 1173 

instruction file is any file that contains machine instruction code subject to runtime execution, 1174 

whether in the form of machine instructions which can be directly executed by computing 1175 

hardware or hardware emulators, bytecode which can be executed by a bytecode interpreter, or 1176 

scripts which can be executed by scripting language interpreters. Library files that are 1177 

dynamically loaded at runtime are also be considered to be machine instruction files. 1178 

PRI-4. [Auth] The <Payload> element MUST list every machine instruction file 1179 

comprising the product described by the tag. 1180 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 31 

PRI-5. [Non-Auth] The <Evidence> element MUST list every machine instruction file 1181 

comprising the product described by the tag. 1182 

4.1.2 Mapping to Common Platform Enumeration Names 1183 

A component of NIST’s Security Content Automation Protocol (SCAP), the Common Platform 1184 

Enumeration (CPE) is a standardized method of naming classes of applications, operating 1185 

systems, and hardware devices present among an enterprise’s computing assets.
5
 NIST maintains 1186 

a dictionary of CPE names as part of the National Vulnerability Database (NVD).
6
 Today, CPE 1187 

names play an important role in the NVD, and are used to associate vulnerability reports to the 1188 

affected software products. Many cyberspace defense products report discovered software using 1189 

CPE names, and use those names to search the NVD for indications of vulnerability. 1190 

At some point in the future, as SWID tags become widely used and available, SWID tags will be 1191 

able to supplant CPE names as the primary means of identifying software products and 1192 

correlating vulnerability reports with those products. Until that occurs, SWID tags need to 1193 

provide certain data values from which CPE names could be mechanically generated. These 1194 

generated CPE names can be used to populate the CPE dictionary and to allow for searching 1195 

repositories like the NVD. SWID tags can contain the data values in the <Meta> element that 1196 

are needed to support CPE name generation. Four necessary <Meta> element attributes are: 1197 

 @product: This attribute provides the base name of the product (e.g., Acrobat, Creative 1198 

Suite, Office, Websphere, Windows, etc.). The base name does not include substrings 1199 

containing the software creator’s name, or indicators of the product’s version, edition, or 1200 

patch/update level. 1201 

 @colloquialVersion: This attribute provides the informal or colloquial version of 1202 

the product (e.g., 2015). Note that this version may be the same through multiple releases 1203 

of a software product whereas the version specified in the <SoftwareIdentity> 1204 

@version is more specific and will change for each software release. 1205 

 @revision: This attribute provides an informal designation for the version of the 1206 

product (e.g., RC1, Beta 2, SP1). 1207 

 @edition: This attribute provides an informal name for a variation in a product (e.g., 1208 

enterprise, personal, basic, professional). 1209 

Using these data values, a CPE name could be mechanically generated according to the 1210 

following rules in Augmented BNF syntax [RFC 5234]: 1211 

                                                 

5 See: http://scap.nist.gov/specifications/cpe/. 

6 See: https://nvd.nist.gov/. 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 32 

cpename = ‘cpe:2.3:*:’ ven ‘:’ p ‘:’ ver ‘:’ u ‘:’ e 1212 
‘:*:*:*:*:*’ 1213 

ven  = value of <Entity> @name 1214 

where <Entity> @role = softwareCreator 1215 

p  = value of <Meta> @product + “_” +  1216 

<Meta> @colloquialVersion 1217 

ver  = value of <SoftwareIdentity> @version 1218 

u  = value of <Meta> @revision (if not null), otherwise ‘*’ 1219 

e  = value of <Meta> @edition (if not null), otherwise ‘*’ 1220 

For example, assume the following attribute values are provided in a tag: 1221 

 <Entity> @name = “Fabrikam” 1222 

 <Meta> @product = “Office” 1223 

 <Meta> @colloquialVersion = “2015” 1224 

 <SoftwareIdentity> @version = “10.1.5” 1225 

 <Meta> @revision = “SP1” 1226 

 <Meta> @edition = “Pro” 1227 

The following CPE name could be generated: 1228 

cpe:2.3:*:Fabrikam:Office_2015:10.1.5:SP1:Pro:*:*:*:*:* 1229 

The need for SWID tags to support such mappings to CPE names motivates the following 1230 

guidance: 1231 

PRI-6. A <Meta> element MUST be included in a product’s primary tag. This <Meta> 1232 

element MUST furnish values for the following attributes if appropriate values exist and can 1233 

be determined: @product, @colloquialVersion, @revision, and @edition. 1234 

4.2 Implementing Supplemental Tags 1235 

As noted earlier (cf. Section 2.2.2), a supplemental tag is a tag where the value of the 1236 

<SoftwareIdentity> @supplemental attribute is set to “true”. This section provides 1237 

guidance addressing two topics related to implementation of supplemental tags: the precedence 1238 

of information contained in a primary tag (Section 4.2.1), and linking supplemental tags to 1239 

primary tags (Section 4.2.2). 1240 

4.2.1 Precedence of Information in a Primary Tag 1241 

Supplemental tags are used to furnish data elements which complement or extend data elements 1242 

furnished in a primary tag. Because all tags are required to supply a value for 1243 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 33 

<SoftwareIdentity> @name attribute, the possibility exists that the required value of 1244 

@name furnished in a supplemental tag could differ from the @name value furnished in a 1245 

primary tag. In such cases, the data value furnished by the primary tag takes precedence over the 1246 

value in the supplemental tag. 1247 

SUP-1. If the <SoftwareIdentity> @name furnished in a supplemental tag differs 1248 

from the <SoftwareIdentity> @name furnished in the primary tag, the value in the 1249 

primary tag is considered to be the correct product name. 1250 

4.2.2 Linking a Supplemental Tag to the Primary Tag 1251 

Because the SWID specification does not clearly state how a supplemental tag should indicate its 1252 

linkage to the primary tag, clarifying guidance is provided here. 1253 

SUP-2. A supplemental tag MUST contain a <Link> element to associate itself with the 1254 

tagged product’s primary tag. The @rel attribute of this <Link> element MUST be set to 1255 

“about”, and the @href attribute MUST be set as follows: 1256 

 The tagId of the primary tag is known at time of supplemental tag creation: The 1257 

@href attribute MUST be set to a URI with “swid:” as its scheme, followed by 1258 

the @tagId of the primary tag. 1259 

 The tagId of the primary tag is not known at time of supplemental tag creation: 1260 

The @href attribute MUST be set to a URI reference of the primary tag, with 1261 

“swidpath:” as its scheme, containing an XPATH query which can be resolved in 1262 

the context of the system by software that can lookup other SWID tags and select the 1263 

appropriate one based on an XPATH query. 1264 

4.3 Implementing Patch Tags 1265 

As noted earlier (cf. Section 2.2.2), a patch tag is a tag where the value of the 1266 

<SoftwareIdentity> @patch attribute is set to “true”. This section provides guidance 1267 

addressing two topics related to implementation of patch tags: linking patch tags to related tags 1268 

(Section 4.3.1), and specifying <Payload> or <Evidence> information (Section ). 1269 

4.3.1 Linking a Patch Tag to Related Tags 1270 

Because the SWID specification does not clearly state how a patch tag should indicate its linkage 1271 

to other tags, clarifying guidance is provided here. First, a patch tag must be linked to the 1272 

primary tag of each product affected by the patch. This linkage must address not only those cases 1273 

where a single patch affects multiple distinct products, but also cases where a single patch affects 1274 

multiple instances of the same product installed on a device. 1275 

PAT-1. [Auth] A patch tag MUST contain <Link> elements that associate it with the 1276 

primary tag of each product instance that is affected by the patch. In such <Link> elements, 1277 

the <Link> @rel attribute MUST be set to “patches”, and the <Link> @href 1278 

attribute MUST be set as follows: 1279 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 34 

 The @tagId of the primary tag is known at time of patch tag creation: The 1280 

@href attribute MUST be set to a URI with “swid:” as its scheme, followed by 1281 

the @tagId of the primary tag of the affected product. 1282 

 The @tagId of the primary tag is not known at time of patch tag creation, or 1283 

there is a need to refer to a group of tags: The @href attribute MUST be set to a 1284 

URI reference of the pimary tag of the affected product, with “swidpath:” as its 1285 

scheme, containing an XPATH query which can be resolved in the context of the 1286 

system by software that can lookup other SWID tags and select the appropriate one 1287 

based on an XPATH query. 1288 

In some cases, a patch may require another patch. When a patch “B” requires another patch “A”, 1289 

patch A must be applied before patch B may be applied. This information must be provided to 1290 

allow endpoint software inventory and integrity tools to collect a set of tags (whether primary, 1291 

supplemental, or patch tags) for a given product, and then accurately determine the expected 1292 

Payload on the device. 1293 

PAT-2. [Auth] A patch tag MUST contain a <Link> element associating it with each patch 1294 

tag that describes a required predecessor patch. Each such <Link> element MUST have the 1295 

<Link> @rel attribute set to “requires”, and the <Link> @href attribute MUST be 1296 

set as follows: 1297 

 The @tagId of the required predecessor’s patch tag is known at time of patch 1298 

tag creation: The @href attribute MUST be set to a URI with “swid:” as its 1299 

scheme, followed by the @tagId of the required predecessor’s patch tag. 1300 

 The @tagId of the required predecessor’s patch tag is not known at time of 1301 

patch tag creation, or there is a need to refer to a group of tags: The @href 1302 

attribute MUST be set to a URI reference of the required predecessor’s patch tag, 1303 

with “swidpath:” as its scheme, containing an XPATH query which can be 1304 

resolved in the context of the system by software that can lookup other SWID tags 1305 

and select the appropriate one based on an XPATH query. 1306 

In other cases, a patch may supersede another patch. When a patch “B” supersedes patch “A”, it 1307 

effectively implements all the changes implemented by patch A. This information must be 1308 

provided to allow scanning tools to accurately determine an expected Payload. 1309 

PAT-3. [Auth] A patch tag MUST contain a <Link> element associating it with each patch 1310 

tag that describes a superseded patch. Each such <Link> element MUST have the <Link> 1311 

@rel attribute set to “supersedes”, and the <Link> @href attribute MUST be set as 1312 

follows: 1313 

 The @tagId of the superseded patch tag is known at time of patch tag creation: 1314 

The @href attribute MUST be set to a URI with “swid:” as its scheme, followed 1315 

by the tagId of the superseded patch tag. 1316 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 35 

 The @tagId of the superseded patch tag is not known at time of patch tag 1317 

creation, or there is a need to refer to a group of tags: The @href attribute MUST 1318 

be set to a URI reference of the required predecessor’s patch tag, with 1319 

“swidpath:” as its scheme, containing an XPATH query which can be resolved in 1320 

the context of the system by software that can lookup other swidtags and select the 1321 

appropriate one based on an XPATH query. 1322 

4.3.2 Patch Tag Payload and Evidence 1323 

Patches change files that comprise a software product, and may thereby eliminate known 1324 

vulnerabilities. If patch tags clearly specify the files that are changed as a result of applying the 1325 

patch, software inventory and integrity tools become able to confirm that the patch has actually 1326 

been applied, and that the individual files discovered on the endpoint are the ones that should be 1327 

there. 1328 

This guidance proposes that patch tags document three distinct types of change: 1329 

1. Change: A file previously installed as part of the product has been modified on the 1330 

device. 1331 

2. Remove: A file previously installed as part of the product has been removed from the 1332 

device. 1333 

3. Add: An entirely new file has been added to the device. 1334 

For files that are changed or added, patch tags must include file size and hash values. 1335 

Authoritative tag creators are required to provide this information in the <Payload> element of 1336 

the patch tag. Non-authoritative tag creators are encouraged to provide this information 1337 

whenever possible in the <Evidence> element of the patch tag. 1338 

PAT-4. [Auth] A patch tag MUST contain a <Payload> element which MUST enumerate 1339 

every file that is changed, removed, or added by the patch. 1340 

PAT-5.  [Auth] Each <File> element contained within the <Payload> element of a patch 1341 

tag MUST include an extension attribute named @patchEvent, which MUST be one of the 1342 

following values: 1343 

 The string value “change” to indicate a preexisting file has been modified on the 1344 

device 1345 

 The string value “remove” to indicate a preexisting file has been removed from the 1346 

device 1347 

 The string value “add” to indicate a new file has been added to the device 1348 

PAT-6. [Non-Auth] A patch tag MUST contain an <Evidence> element which 1349 

enumerates every file that was used as part of the detection process. 1350 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 36 

4.4 Implementing Corpus Tags 1351 

As noted earlier (cf. Section 2.2.2), a corpus tag is a tag where the value of the 1352 

<SoftwareIdentity> @corpus attribute is set to “true”. This section provides 1353 

guidance addressing two topics related to implementation of corpus tags: specification of 1354 

Payload information (Section 4.4.1), and signing of corpus tags (Section 4.4.2). 1355 

4.4.1 Corpus Tag Payload 1356 

Corpus tags are used to document the installation media associated with a software product. This 1357 

documentation enables the media to be checked for authenticity and integrity. The usual 1358 

distinction between authoritative and non-authoritative tag creators does not apply to creators of 1359 

corpus tags. The creator of installation media for a given software product may, but need not be, 1360 

the same entity that created the product itself. Any creator of installation media is considered to 1361 

be an authoritative tag creator of any associated corpus tag. Furthermore, it is expected that any 1362 

creator of a corpus tag must necessarily have sufficient access to the installation media being 1363 

tagged to be able to satisfy the guidance below. 1364 

At a minimum, corpus tags are required to provide Payload details that enumerate all the files on 1365 

the installation media, including file size and hash values. 1366 

COR-1. A corpus tag MUST contain a <Payload> element which MUST enumerate every 1367 

file that is included in the tagged installation media. 1368 

4.4.2 Corpus Tag Signing 1369 

As noted above, corpus tags are needed to support authenticity and integrity checks. For this to 1370 

work, the tags themselves must be digitally signed to ensure that the data values contained within 1371 

the tag, including the <Payload> details, have not been modified, and a separate signature is 1372 

required to support authentication of the provider of the tag. 1373 

 Question: What is the appropriate guidance to provide w/r/t signing of corpus tags? 1374 

4.5 Summary 1375 

This section provided draft implementation guidance related to all four SWID tag types: primary, 1376 

supplemental, patch, and corpus. Key points: 1377 

 Authoritative creators of primary tags are required to provide <Payload> information, 1378 

and to include <Meta> attribute values needed to support automated generation of 1379 

Common Platform Enumeration names. Non-authoritative creators of primary tags are 1380 

required to provide <Evidence> information for any data used to detect the presence of 1381 

the product. 1382 

 Any value supplied for <SoftwareIdentity> @name in a supplemental tag is 1383 

overridden by the value supplied for <SoftwareIdentity> @name in the primary 1384 

tag. Supplemental tags must provide <Link> information associating them with the 1385 

primary tag.  1386 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 37 

 Patch tags must be explicitly linked to the primary tag of the patched product, as well as 1387 

to any tags of required predecessor patches or superseded patches. Patch tags must 1388 

document all files changed, removed, or added by the patch. 1389 

 Corpus tags must include <Payload> details, and must be digitally signed to facilitate 1390 

authentication and integrity checks. 1391 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 38 

5 SWID Tag Usage Scenarios 1392 

This section describes a number of usage scenarios for software asset management and for 1393 

software integrity management. These are not intended to represent an exhaustive or conclusive 1394 

list of possible SWID applications, but provide informative examples regarding the use of the 1395 

SWID specification to accomplish various organizational needs. 1396 

5.1 Software Inventory Management 1397 

Proper understanding and control of the software deployed on devices within the organization 1398 

enables network security professionals to achieve security requirements. Software Asset 1399 

Management (SAM) helps to ensure effective management of software assets, including the 1400 

identification of potential software weaknesses that may be exploited. SAM is an important 1401 

component of planning and execution for system backup and recovery processes. The use of 1402 

SWID tags as described in the previous sections provides for interoperability and automation 1403 

supported by a variety of situational awareness and configuration management products. These 1404 

products, for example, evaluate the difference between the observed software inventory (from 1405 

SWID tags) and a desired state specification. Continuous monitoring processes can use the 1406 

SWID tag data to identify and report any variance, such as in the examples below. The use of 1407 

SWID tags also reduces reliance on proprietary algorithms used by commercial-off-the-shelf 1408 

(COTS) products for identifying installed applications, software components, and patches within 1409 

an IT environment. 1410 

5.1.1 Usage Scenario 1 – Collecting Software Inventory Information from an Endpoint 1411 

A primary usage of SWID tools is to enable automated tools to collect information from an 1412 

organization’s endpoints, building a comprehensive inventory of the installed software products 1413 

on each endpoint and supporting effective search and analysis. This type of usage can support 1414 

operational decisions by indicating if a software product is authorized for use, meets licensing 1415 

requirements, and has been properly patched against vulnerabilities. 1416 

SWID tags are portable across different device types and platforms. Both SWID tags and the 1417 

data they represent may be stored in a local repository on the endpoint, or may be recorded 1418 

centrally by an enterprise system. This data may be updated periodically (e.g. every 72 hours), or 1419 

as needed to support an event-based requirement. 1420 

The use of standardized data and tagging implementation models provided by SWID tags for 1421 

deployed software enables tools to easily share software inventory information and “roll-up” 1422 

software inventory reports. 1423 

5.1.1.1 Assumptions 1424 

This usage scenario assumes that the following conditions exist: 1425 

 The discovery tool has sufficient access rights to the endpoint to discover each software 1426 

instance and the metadata about it 1427 

 The discovery tool has network connectivity to the endpoint 1428 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 39 

5.1.1.2 Process 1429 

The SAM tool acquires the complete set of tags from each endpoint via its own agent installed 1430 

locally on the managed system, or via a remote management interface that can collect the SWID 1431 

tags. Additionally, the SAM tool gathers endpoint identification information (host name, IP 1432 

addresses, etc.), the date/time of the data collection, and data about the discovery tool agent or 1433 

remote management interface used. 1434 

For each managed system in the local and/or central repository:  1435 

1. Update the inventory database with the data from the existing SWID tags creating entries for 1436 

software products and their components. At a minimum, those tags SHOULD include the 1437 

software @name and @version attribute values of the <SoftwareIdentity> element. 1438 

If the version scheme is not the commonly-used multipart-numeric scheme (e.g., has a suffix 1439 

such as 1.2.3a), the tag SHOULD use the @VersionScheme attribute to indicate the 1440 

encoding method used. 1441 

2. Record additional information contained within the SWID tags. The information below 1442 

SHOULD be collected, if available: 1443 

 Values from <Payload> element, @File attributes such as name, size, location, and 1444 

cryptographic algorithm/hash. 1445 

 Information from <Link> elements that describe a relationships to another software 1446 

item or additional product data (e.g. licensing information) through the <Meta> 1447 

elements. 1448 

3. If a tag has not been installed with the software, the SAM tool will create a 3
rd -

party tag on 1449 

the endpoint for each instance of an application discovered. That 3
rd

 -party tag will include 1450 

relevant data using the <Evidence> element about the software products installed. This 1451 

information SHOULD include data from the <Evidence> element, @File attributes such 1452 

as file name, size, location, and cryptographic algorithm/hash. 1453 

5.1.1.3 Outcomes 1454 

Through the use of SWID tags for software inventory collection, organizations are able to 1455 

improve situational awareness through more accurate and timely discovery of software data. This 1456 

supports software inventory management as described above —the process of building and 1457 

maintaining an accurate and complete inventory of all software products deployed on all of the 1458 

devices under an organization’s operational control. 1459 

5.1.2 Usage Scenario 2 –Software Inventory Reporting 1460 

Based on data previously collected, as described in Section 5.1.1, SWID tags enable many 1461 

software reporting capabilities regarding the software inventory of enterprise systems. SWID 1462 

tags enable accurate and reliable reporting of the software products installed on endpoints within 1463 

the infrastructure, and exchange of relevant data about those products. Together, this information 1464 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 40 

is critical in effectively managing information technology across an enterprise. SWID tags 1465 

provide a vendor-neutral and platform-independent way to report software installation state (e.g. 1466 

software installed, products missing, or applications in need of patching.) Several example 1467 

processes are described below, representing a subset of the potential reporting capabilities 1468 

enabled by the use of SWID tags. 1469 

5.1.2.1 Assumptions 1470 

This usage scenario assumes that the following conditions exist: 1471 

 A software asset management repository is populated with SWID tags from a given 1472 

endpoint and will be updated on a timely or event-driven basis as the endpoint software 1473 

inventory changes. 1474 

 At a minimum, those tags SHALL include the software @name and @version attribute 1475 

values of the <SoftwareIdentity> element. 1476 

5.1.2.2 Process 1: Reporting the Software Installed on an Endpoint 1477 

1. For a given endpoint, the SAM Tool iterates through each tag in the repository including 3
rd

-1478 

party SWID tags. 1479 

2. The SAM Tool parses the values contained in @name and @version attribute of the 1480 

<SoftwareIdentity> element and other relevant software identification information 1481 

(e.g. revisions, colloquial names) to create an accurate and comprehensive report of the 1482 

software discovered. 1483 

3. The software inventory report is provided through the SAM Tool’s dashboard and/or 1484 

reporting process. As appropriate, the SAM Tool may trigger alerts based on pre-determined 1485 

conditions (e.g. prohibited software detected.)  1486 

5.1.2.3 Process 2: Identifying Instances of a Given Product 1487 

One common enterprise need is to determine which endpoints have a specific product installed, 1488 

such as to confirm that a mandatory software item and version are installed. Consider a scenario 1489 

where we want to report the endpoints that contain the product, Acme Roadrunner, and the 1490 

versions installed on those endpoints.  1491 

1. For a given endpoint (or set of endpoints), the SAM Tool iterates through each tag in the 1492 

repository including 3
rd

-party SWID tags. 1493 

2. The SAM Tool parses the values contained in @name and @version attributes of the 1494 

<SoftwareIdentity> element, searching specifically for values for @name = “Acme 1495 

Roadrunner”. Where a match is located, the SAM Tool records the endpoint identifier for the 1496 

device on which the tag was found and notes relevant version information from the values for 1497 

the @version attribute. 1498 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 41 

3. The software inventory report is provided through the SAM Tool’s dashboard and/or 1499 

reporting process. As appropriate, the SAM Tool may trigger alerts based on pre-determined 1500 

conditions (e.g. prohibited software detected.)  1501 

5.1.2.4 Process 3: Identifying Endpoints That Are Missing a Product 1502 

Another common need is to determine which endpoints are missing a required software product. 1503 

Consider a scenario where the implementation baseline requires each endpoint to contain the 1504 

product, Acme Roadrunner, version 12.2.  1505 

 1506 

1. Through a dashboard or other internal process, the SAM Tool is informed about the endpoint 1507 

(or set of endpoints) that are required to contain the referenced software product and version. 1508 

The SAM Tool iterates through the recorded tags in the repository, including 3
rd

-party SWID 1509 

tags, associated with that set of one or more endpoints. 1510 

2. The SAM Tool parses the values contained in @name and @version attributes of the 1511 

<SoftwareIdentity> element, searching specifically for values for @name = “Acme 1512 

Roadrunner” and the value “12.2” from the @version attribute.  1513 

3. Where a match is not located, the SAM Tool records the endpoint identifier for each device 1514 

that does not comply with the requirement from Step 1. Optionally, where a match is located, 1515 

the SAM Tool records the endpoint’s compliant state. 1516 

4. The software inventory report is provided through the SAM Tool’s dashboard and/or 1517 

reporting process. As appropriate, the SAM Tool may trigger alerts based on pre-determined 1518 

conditions (e.g. required software determined to be absent.)  1519 

5.1.2.5 Process 4: Identifying Endpoints That Contain or are Missing a Patch 1520 

Product providers often create software patches, such as to improve performance, introduce a 1521 

new feature, or mitigate a vulnerability. Consumers often need reports about endpoints that are 1522 

missing a known patch for security awareness or to help prepare installation plans.  1523 

 1524 

1. For a given endpoint (or set of endpoints), the SAM Tool iterates through each tag in the 1525 

repository including 3
rd

-party SWID tags. 1526 

2. As described in Section 5.1.2.3, the SAM Tool parses the values contained in @name 1527 

attribute of the <SoftwareIdentity> element, searching specifically for values where 1528 

the @name matches the patch tag name.  1529 

3. Where a match is not located, the SAM Tool records the endpoint identifier for the unpatched 1530 

device. Optionally, where a match is located, the SAM Tool records that fact. 1531 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 42 

4. The software inventory report is provided through the SAM Tool’s dashboard and/or 1532 

reporting process. As appropriate, the SAM Tool may trigger alerts based on pre-determined 1533 

conditions (e.g. endpoints that are missing a given security patch.)  1534 

5.1.2.6 Process 5: Identifying Orphaned Software Components/Patches on Endpoints 1535 

Components of previously installed software products, including patches that were applied but 1536 

left behind when that product was uninstalled, might use valuable resources on an endpoint. 1537 

These orphaned components may also represent a software vulnerability if they contain an 1538 

exploitable flaw. SWID tag reporting can identify endpoints that contain items such as binaries 1539 

and runtime libraries that belong to no installed package.  1540 

1. For a given endpoint (or set of endpoints), the SAM Tool iterates through each tag in the 1541 

repository including 3
rd

-party SWID tags. The Tool specifically inspects tags indicating 1542 

relationships to other products as indicated by the <Link> element, @rel attribute. (e.g., a 1543 

SWID tag for the French Language Pack for RoadRunner Word Processor  identified by 1544 

tagId="{GUID}RoadRunnerWP-2013-French" with a value of “parent” in 1545 

the @rel attribute of the <Link> element and pointing to @href value 1546 

“swid:{GUID}RoadRunnerWP-2013") 1547 

2. For each such tag located, the SAM Tool verifies the installation of the parent software by 1548 

checking for the referenced installation SWID tag (in this example, 1549 

“swid:{GUID}RoadRunnerWP-2013") 1550 

3. Where a match is not located, the SAM Tool records that an orphaned software component 1551 

may exist on that endpoint.  1552 

4. The software inventory report is provided through the SAM Tool’s dashboard and/or 1553 

reporting process.  1554 

5.1.2.7 Process 6 – Reporting Installation of Authorized or Prohibited Software 1555 

Many organizations strictly control what software may or may not be installed on information 1556 

systems. SAM tools, supported by collected SWID tag information, can provide specific reports 1557 

that confirm that all installed software on a given endpoint matches the specification of an 1558 

“approved software baseline”, or whitelist. Often, this comparison will be based upon evaluation 1559 

of the name and version information from the <SoftwareIdentity> element, @name and 1560 

@version attributes. 1561 

1. Through a dashboard or other internal process, the SAM Tool is provided with a set of SWID 1562 

tags that represent (a) a list of approved software items (i.e., a “whitelist”), or (b) a list of 1563 

prohibited software items (i.e., a “blacklist”.) 1564 

2. The SAM Tool iterates through the recorded tags in the repository, including 3
rd

-party SWID 1565 

tags, associated with one or more endpoints on which to report. 1566 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 43 

3. The SAM Tool parses the values contained in @name and @version attributes of the 1567 

<SoftwareIdentity> element, searching specifically for values in the @name attribute 1568 

and optionally from the @version attribute. The tool compares each value to the list 1569 

provided in step 1. 1570 

4. If additional confirmation is required, such as to help prevent against an unauthorized 1571 

product masquerading as approved software, the SAM tool can compare the observed 1572 

cryptographic hash of each software product (from the  <Payload> element, @File 1573 

attribute, cryptographic algorithm/hash, stored in the SWID tag) with hash values stored in 1574 

the listing  from step 1 (the “whitelist” or “blacklist”). 1575 

5. Where a match to an authorized software product is not located, the SAM Tool reports that 1576 

condition. This information may support a security policy decision such as whether to only 1577 

permit a network connection from a device with a required anti-virus product. 1578 

6. Where a match to a blacklisted software product is located, the SAM Tool reports that 1579 

condition. This information may support another type of security policy decision, such as 1580 

quarantining a device that is found to contain a software product that is specifically 1581 

prohibited. 1582 

7. The SAM Tool’s may also perform other reporting such as sending logs or alerts to a 1583 

Security Information Event Management (SIEM) system. 1584 

5.1.2.8 Outcomes 1585 

For each of the processes described above, the application of SWID tags enables the organization 1586 

to use automation for the accurate and timely reporting of software inventory information. While 1587 

many of these processes are achievable without SWID tags, the consistent and precise 1588 

information these tags provide is beneficial. 1589 

5.2 Usage Scenario 3 – Determining Vulnerable Software on an Endpoint 1590 

SWID tags provide valuable information to relate software installation information with 1591 

vulnerability findings from one or more sources (described below). Vulnerability assessment is 1592 

performed to identify flaws in an endpoint’s software. If an endpoint’s software is updated in a 1593 

timely fashion and has no unmitigated known vulnerabilities, no action is needed; unfortunately, 1594 

usually that’s not the case. SWID tags provide comprehensive, compact description of software 1595 

installed which may then be compared with a source of vulnerability information to 1596 

automatically find vulnerabilities. Without SWID tags, it is necessary to examine all the 1597 

endpoints to determine potentially vulnerable software. Through the use of a consistent and 1598 

standardized structure, SWID enables effective operations between the vulnerability information 1599 

sources (e.g. National Vulnerability Database, vendor alerts, US CERT alerts) and the SAM tools 1600 

that collect inventory information.  1601 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 44 

5.2.1.1 Assumptions 1602 

This usage scenario assumes that the following conditions exist: 1603 

 A software asset management repository will be populated with SWID tags from a given 1604 

endpoint and will be updated on a timely or event-driven basis as the endpoint software 1605 

inventory changes. 1606 

 At a minimum, those tags SHALL include the software @name and @version attribute 1607 

values of the <SoftwareIdentity> element. 1608 

 If a tag has not been installed with the software, a SAM tool will have created a 3
rd

 party 1609 

tag for each instance of an application discovered on the endpoint. That 3
rd

 party tag will 1610 

include relevant data (using the <Evidence> element) about the software products 1611 

installed. It should be noted that the accuracy and completeness of such inventory tags 1612 

will be limited if the discovery tool does not have sufficient access rights to the endpoint. 1613 

5.2.1.2 Process 1 – Including SWID Tag Information in a Vulnerability Bulletin 1614 

Many software providers create occasional bulletins that describe vulnerabilities that have been 1615 

discovered within software products. These bulletins SHOULD include SWID tag information to 1616 

uniquely describe vulnerable software as follows: 1617 

1. The vulnerability bulletin SHOULD provide name and version information which can be 1618 

used by SAM tools to compare with endpoint tag data. At a minimum, that data SHOULD 1619 

include information that will match the software @name and @version attribute values of 1620 

the <SoftwareIdentity> element. If the version scheme is not the commonly-used 1621 

multipart-numeric scheme (e.g., has a suffix such as 1.2.3a), the bulletin SHOULD use the 1622 

@versionScheme attribute to indicate the encoding method used. 1623 

2. If a software provider uses additional information to identify the software product (e.g. 1624 

Professional Edition), this additional data MUST be included in the bulletin to match SWID 1625 

tag data, using the <Meta> element providing at least the @product, @productFamily, 1626 

and @revision attributes. 1627 

5.2.1.3 Process 2 – Use of SWID Tag Data for Determining Vulnerable Software 1628 

1. Using the information about reported software vulnerability from one or more software 1629 

vulnerability bulletins, the SAM tool reviews each SWID tag record. 1630 

2. Where a record exists that matches the <SoftwareIdentity> element, @name, 1631 

@version, and @versionScheme attributes, the associated endpoint is flagged as 1632 

containing vulnerable software. 1633 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 45 

3. Where patch SWID tag information is provided in the bulletin, the SAM tool queries the 1634 

database to determine whether the appropriate patch tag has been installed. 1635 

4. If the endpoint is found to contain vulnerable software but not the associated patch, the 1636 

system may be flagged to support other potential mitigation activities. 1637 

Consider the case of the vulnerability described by a fictional CVE, CVE-1990-0301. It 1638 

describes a known buffer overflow in the product named Acme Roadrunner, versions between 1639 

11.1 and 12.1. The issue was remediated in version 12.2 and later. There is also a patch KB123 1640 

that mitigates the vulnerability. The SAM tool can use matching logic to review the collected 1641 

SWID tags for the endpoint, searching for installed software instances that match: 1642 

      SoftwareIdentity> @name=”Acme Roadrunner” and either:   1643 

             whose major version is 11 and minor version is greater than or equal to 1; or 1644 

             whose major version is 12 and minor version is less than 2. 1645 

 1646 

            And also the presence of the following in the software inventory: 1647 
     <SoftwareIdentity> @name=”Acme_Roadrunner_KB123”. 1648 

 1649 

Upon discovering a SWID tag that indicates the installation of a vulnerable version of the Acme 1650 

Roadrunner product (e.g. Acme Roadrunner version 11.5), the SAM tool searches through the 1651 

repository and discovers a Patch Tag named “Acme_Roadrunner_KB123” associated with that 1652 

endpoint.  1653 

 1654 

Given the above scenario, the SAM tool reports that the endpoint contains software with a 1655 

known vulnerability, but appears to have been patched. This information can be reported for 1656 

security situational awareness and supports security analysis. 1657 

5.2.1.4 Outcomes 1658 

Through the use of SWID tags for the description and discovery of vulnerable software, 1659 

organizations are able to achieve accurate and timely security situational awareness. 1660 

5.3 Software Integrity Management 1661 

SWID tags support an organizations ability to identify signs that a software product may have 1662 

been tampered with, such as through comparison of the current cryptographic hash with that 1663 

recorded previously. This information may be used to help prevent execution of an application 1664 

where tampering is suspected, or to alert a security reporting process. 1665 

5.3.1 Usage Scenario 4 - Detection of software tampering 1666 

An important element of software asset management is the discovery of any files on endpoints 1667 

that have been tampered with since the software was installed. This condition may be part of a 1668 

SAM report, or may be used by a security product to quarantine or prevent execution of an 1669 

application that shows signs of tampering.  1670 

Organizations are encouraged to take advantage of this capability using SWID tags to convey 1671 

important information about the characteristics of installed software. Specifically, the ability to 1672 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 46 

store and compare cryptographic hashes of installed executable software is a useful method to 1673 

identify potential tampering or unauthorized changes. 1674 

5.3.1.1 Assumptions 1675 

This usage scenario assumes that the following conditions exist: 1676 

 A software asset management repository will be populated with SWID tags from a given 1677 

endpoint and will be updated on a regular basis as the endpoint software inventory 1678 

changes. If a tag has not been installed with the software, a SAM tool has created a 3
rd

 1679 

party tag for each instance of an application discovered on the endpoint 1680 

 An organization has chosen to use the SWID tag cryptographic hash capabilities to detect 1681 

tampering or other unauthorized changes. 1682 

 The SAM tool records a cryptographic hash for each executable file on each endpoint by 1683 

recording each hash in <Payload> element, @File attribute, cryptographic 1684 

algorithm/hash value. 1685 

5.3.1.2 Process 1686 

1. For each endpoint, the SAM tool reads the stored cryptographic hashes for each file listed in 1687 

<Payload> element, @File attribute, cryptographic algorithm/hash. 1688 

2. The SAM tool calculates the current cryptographic hash of the actual files on those 1689 

endpoints, using the same algorithm as originally used in the SWID tags.   1690 

3. If any file hash does not match the manifest provided, the reporting tool will set an error 1691 

condition that will report the variance and/or help prevent that application from being used. 1692 

Note: this operation is likely to result in high utilization of the resources on those endpoints 1693 

and should be performed with caution. 1694 

5.3.1.3 Outcomes 1695 

Identifying tampered executable files in an automated, accurate and timely manner supports an 1696 

organization’s ability to prevent execution of files that have been infected by malware or by 1697 

other types of malicious activities. 1698 

5.4 Usage Scenario 5 - Mapping SWID Tag to Other SWID Schemes 1699 

Many software identification schemes exist today, some standardized and others proprietary. The 1700 

data provided within SWID tags can support automatic translations to other schemes (e.g., CPE). 1701 

SWID can also provide stable identifiers and categorization data that can be used to creating 1702 

mappings. 1703 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 47 

The primary use cases for this category include: 1704 

 Legacy systems and tools that rely upon the use of CPE and are not planning to change to 1705 

SWID in the near future 1706 

 Systems and tools that are in the process of migrating from CPE to SWID and must 1707 

support both during some transition timeframe. 1708 

5.5 Usage Scenario 6 - Network-Based Policy Enforcement based on SWID Information 1709 

Controlling access to network resources enables organizations to ensure that the state of an 1710 

endpoint is acceptable at the time of connection and on an ongoing basis. Detecting and 1711 

evaluating the software inventory of a device, based on SWID tags, is an important dimension of 1712 

network access control decisions. 1713 

  1714 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 48 

Appendix A—Acronyms  1715 

Selected acronyms and abbreviations used in this paper are defined below. 1716 

CPE Common Platform Enumeration 

ISCM Information Security Continuous Monitoring 

NVD National Vulnerability Database 

SCAP Security Content Automation Protocol 

USG United States Government 

  1717 



NISTIR 8060  SWID Tag Interoperability Guidelines 

 49 

Appendix B—References 1718 

[ISO/IEC 

19770-

2:2009] 

International Organization for Standardization/International Electrotechnical 

Commission, Information technology -- Software asset management -- Part 

2: Software identification tag, ISO/IEC 19770-2:2009, 2009. 

http://www.iso.org/iso/catalogue_detail?csnumber=53670 [accessed 

5/26/15]. 

[RFC 3986] Berners-Lee, T., Fielding, R., and Masinter, L. (2005). Uniform Resource 

Identifier (URI): Generic Syntax. Internet Engineering Task Force (IETF) 

Network Working Group Request for Comments (RFC) 3986, January 2005. 

https://www.ietf.org/rfc/rfc3986.txt [accessed 5/26/15].   

[XAdES] Cruellas, J., Karlinger, G., Pinkas, D., and Ross, J. (2003), XML Advanced 

Electronic Signatures (XAdES). World Wide Web Consortium (W3C) Note, 

February 2003. http://www.w3.org/TR/XAdES/ [accessed 5/26/15].  

[xmldisg-

core] 

Bartel, M., Boyer, J., Fox, B., LaMacchia, B, and Simon, E. (2008), XML 

Signature Syntax and Processing (Second Edition). World Wide Web 

Consortium (W3C) Recommendation, June 2008. 

http://www.w3.org/TR/xmldsig-core/ [accessed 5/26/15]. 

[FIPS186-4] U.S. Department of Commerce. Digital Signature Standard (DSS), Federal 

Information Processing Standards (FIPS) Publication 186-4, July 2013, 

130pp. http://dx.doi.org/10.6028/NIST.FIPS.186-4 [accessed 5/26/15]. 

[SP800-57-

part-1] 

NIST Special Publication (SP) 800-57 Part 1 Revision 3, Recommendation 

for Key Management – Part 1: General, National Institute of Standards and 

Technology, Gaithersburg, Maryland, July 2012, 147pp. 

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-

57_part1_rev3_general.pdf [accessed 5/26/15]. 

[SP800-107] NIST Special Publication (SP) 800-107 Revision 1, Recommendation for 

Applications Using Approved Hash Algorithms, National Institute of 

Standards and Technology, Gaithersburg, Maryland, August 2012, 25pp. 

http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf 

[accessed 5/26/15]. 

[FIPS180-4] U.S. Department of Commerce. Secure Hash Standard (SHS), Federal 

Information Processing Standards (FIPS) Publication 180-4, March 2012, 

37pp. http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf 

[accessed 5/26/15]. 

[NISTIR 

7802] 

Booth, H., and Halbardier, A. (2011). Trust Model for Security Automation 

Data 1.0.National Institute of Standards and Technology Interagency Report 

7802. Available at: http://csrc.nist.gov/publications/nistir/ir7802/NISTIR-

http://www.iso.org/iso/catalogue_detail?csnumber=53670
https://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/XAdES/
http://www.w3.org/TR/xmldsig-core/
http://dx.doi.org/10.6028/NIST.FIPS.186-4
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf


NISTIR 8060  SWID Tag Interoperability Guidelines 

 50 

7802.pdf. [accessed 5/26/15]. 

[RFC 5234] Crocker, D., and P. Overell. (2008). Augmented BNF for Syntax 

Specifications: ABNF. Internet Engineering Task Force (IETF) Request for 

Comments (RFC) 5234, January 2008. https://tools.ietf.org/html/rfc5234 

[accessed 5/26/15]. 

 1719 


